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Abstract

The transferences of heterocentric astigmatic 
Purkinje systems are special: submatrices B and C, 
that is, the disjugacy and the divergence of the sys-
tem, are symmetric and submatrix D (the divarica-
tion) is the transpose of submatrix A (the dilation).  
It is the primary purpose of this paper to provide a 
proof.  The paper also derives other relationships 

among the fundamental properties and compact 
expressions for the transference and optical axis 
locator of a Purkinje system. (S Afr Optom 2011 
70(2) 57-60)

Key words: Purkinje system, transference, sym-
plecticity, heterocentricity, astigmatism, optical 
axis

Introduction

A recent paper1 shows how to calculate the ray 
transference of astigmatic heterocentric catadioptric 
systems if the optical elements within the system are 
known.  Purkinje systems, that is, the four systems 
responsible for formation of the Purkinje images 
observed in an eye, were treated as examples.  
Inspection of the those transferences calculated for 
a particular eye (see Table 1) suggests a number of 
features that may be common to all Purkinje and 
Purkinje-like systems, namely that the disjugacy 
and divergence are both symmetric and that the 
divarication is the transpose of the dilation.  The 
purpose of this paper is to prove that all such systems 
do, indeed, have those features, and a couple more, 
and to derive compact forms for the transference and 
optical axis locator of a Purkinje system.

Purkinje systems

In forming a Purkinje image light is reflected off 

the front of one of the surfaces in the eye.  That sur-
face is acting as an anterior catoptric system which 
we represent by Sc ; it is one of three subsystems that 
we identify.  The other two consist of the same physi-
cal system, namely the portion of the eye in front of 
the reflecting surface, but traversed twice, once in the 
positive sense of the longitudinal axis Z (Figure 1), 
and once in the negative sense.  The portion traversed 
in the positive sense we represent as (unreversed) di-
optric subsystem S1, the same portion traversed in the 
reverse sense we represent as reversed dioptric sub-
system 1S⇐ .  The Purkinje system   itself can be repre-
sented as the three subsystems arranged sequentially 
as follows:1

⇐= 1c1P SSSS .					            (1)
The reflecting surface is the first surface of the tear 

film in the case of the first Purkinje system, the sec-
ond surface of the cornea in the case of the second 
Purkinje system, the first surface of the lens in the 
case of the third Purkinje system and the back of the 
lens in the case of the fourth Purkinje system.  In the 
case of the first Purkinje system subsystem S1 is taken 
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Transferences

The general form of the transference of a catadi-
optric system is1
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T is 55× , A, the dilation, B, the disjugacy¸ C, the 
divergence, and D, the divarication, are 22× , e, the 
transverse translation, and π , the deflectance, are 

12× , o is the 12×  null matrix, and oT is its matrix 
transpose.  T is an augmented symplectic matrix; that 
implies relationships among its submatrices, a sum-
mary of which is presented elsewhere.2  In particular 
we can represent the transference of a Purkinje sys-
tem as
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The bottom rows of the transferences in Table 1 are 
omitted to save space.  Units are also omitted for the 
same reason; Bp and ep are in millimeters and Cp is 
in kilodioptres.

In terms of the transferences of the three subsys-
tems the transference of the Purkinje system is given 
by1

1c1P TTTT ⇐= .			                       (4)

T1 is obtained by adding subscripts 1 to Equation 
2.   Tc, an anterior catoptric transference, is given by 
Equation 53 of the previous paper1:
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where na is the index of refraction of the medium im-
mediately anterior to the reflecting surface and K and 
m are the curvature and tilt respectively of the reflect-
ing surface. K is a symmetric 22×  matrix and m a   

12×  matrix. ⇐
1T  is given by applying Equation 28 of 

the previous paper1 to subsystem S1 :
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to be the trivial or identity system.1

Table 1  Transferences of the four Purkinje systems for a par-
ticular model eye.  The trivial bottom rows are omitted.  The 
top-right   block is in millimeters and the bottom-left   block is 
in kilodioptres.

 
Figure 1  Schematic representation of Purkinje system 

⇐= 1c1P SSSS .  The eye is from the tear film on the cornea K to 
the retina R.  Z is a longitudinal axis.  Y1 and Y2 are two mutually 
orthogonal transverse axes.  T0 is a transverse plane immediately 
in front of the tear film; it represents the entrance plane of the 
Purkinje system.  The exit plane T coincides with T0; hence the 
distance z between them is 0.  The incident and emergent seg-
ments of a ray are shown.  The ray traverses dioptric subsystem 

⇐
1S , is reflected by anterior catoptric subsystem   and finally 

traverses reversed dioptric subsystem. n0 and na are the indices 
immediately to the left of T0 and Sc respectively.
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Substituting into Equation 4 one obtains

( )( )
( )( )

















++++++
++++++

=
1

222
222

TT
11a

T
11

T
1a1

T
11

T
11

T
1a1

T
11

T
1

11a
T
11

T
1a1

T
11

T
11

T
1a1

T
11

T
1

P

oo
meABADABCAACAAC
meBBBDBBDABCBAD

T π
π

KKK
KKK

nnn
nnn

From Equations 3 and 7 we see that a Purkinje sys-
tem has disjugacy

1
T
1a1

T
11

T
1P 2 BBDBBDB Kn++=  .		         (8)

Now, because of symplecticity2,  1
T
1 BD  is symmet-

ric.  Because K is symmetric  1
T
1 BB KK 1
T
1 BB K  is symmetric 

as transposition shows.  It follows that Bp is symmet-
ric and can be written

( )1a1
T
1P 2 BDBB Kn+= .			           (9)

By a similar argument one finds that the divergence   
Cp is also symmetric and can be written

( )1a1
T
1P 2 ACAC Kn+= .			         (10)

The dilation of the Purkinje system is

1
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But because of symplecticity2
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T
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Hence

IABCBA ++= 1
T
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T
1P 22 Kn  		        (13)

which can be written

( ) IACBA ++= 1a1
T
1P 2 Kn  .		        (14)

Substitution from Equations 9, 10 and 14 and ap-
plication of symplecticity shows that

PP
2
P CBIA +=

                                                   
(15)

from which it follows that
( ) 0det PP ≥+ CBI .				         (16)

Equation 15 shows that Ap is a square root of  PPCBI +  
and not necessarily the principal square root.

The divarication is
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Transposing Equation 12 and substituting we obtain
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Again using the fact that the curvature K is symmetric 
one finds from Equations 14 and 18 that

T
PP AD = .					           (19)

Applying the transposition of Equation 12 one finds 
that the divarication can also be written

( ) IBDAD −+= 1a1
T
1P 2 Kn .		        (20)

Compact form of the transference

Making use of Equations 9, 10, 14 and 20 one finds 
that the transference of a Purkinje system can be writ-
ten more compactly as
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where
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is a matrix used before1.
It is also true for a Purkinje system that

( ) PPPP πIDeC −=( ) IACBA ++= 1a1
T
1P 2 Kn π ( ) PPPP πIDeC −=,				          (23)

a result one can show by substituting for C ( ) PPPP πIDeC −=, D ( ) PPPP πIDeC −=, e ( ) PPPP πIDeC −= 
and π ( ) PPPP πIDeC −= from Equations 10, 18, 3 and 7 and recogniz-
ing the fact that both 1

T
1 CA  and T

11BA  are symmet-
ric2.

An expression has recently been derived for the 
optical axis locator P of a catadioptric system: Equa-
tion 17 of a previous pape3.  Again substituting from 
Equations 9, 10, 14 and 20 the optical axis locator 
becomes
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where n0 is the index in front of the eye (usually 1).  
This can be written

( )
( )

T

T
1a10

T
1a1

T
1

T
12 











+
+











=

BD
AC

A
BP

K
K

nn
n

 .	                   (25)

.       (7)

K

K

K

K

K

K

K

K
K

K
K

K
K

K
K

K
K

K
K

K

K
K

K
















=

1TT oo
DC

eBA
T π
















=

1TT oo
DC

eBA
T π
















=

1TT oo
DC

eBA
T π
















=

1TT oo
DC

eBA
T π
















=

1TT oo
DC

eBA
T π



S Afr Optom 2011 70(2) 57-60                                                                                                                                      WF Harris -Transferences of Purkinje systems

The South African Optometrist  			        ISSN 0378-9411
 60

The right-hand side of Equation 25 is the product of 
a 24×  and a 42×  matrix.  The rank of neither can 
exceed 2.  But the rank of a product of matrices can-
not be greater than the minimum of the ranks of the 
matrices being multiplied.4, 5  It follows that

2rank ≤P .					           (26)
P, then, is necessarily singular.  (The ranks of the lo-
cators calculated before3 for the Purkinje systems of a 
particular model eye were 2.)

Inspection of the transferences listed in Table 1 
suggests a gradually-changing character from the first 
to the third and a somewhat different character for 
the fourth Purkinje system.  The entries in the first 
four columns are all positive or zero for the first three 
and all negative for the fourth.  The dilation Ap is an 
identity matrix in the case of the first Purkinje system 
and approximately scalar matrices in the case of the 
other Purkinje systems.  The diagonal entries of Ap 
increase from the first to the third Purkinje systems 
but those of the fourth Purkinje system are negative.  
For the first three Purkinje systems it turns out that Ap 
is the principal square root of the right-hand side of 
Equation 15; for the fourth Ap is the negative of the 
principal square root.

Concluding remarks

This paper has shown that, for a Purkinje system, 
the disjugacy Bp and the divergence   are symmetric 
and that the divarication Dp is the transpose of the 
dilation Ap.  It has also derived other relationships 
among the fundamental properties of a Purkinje sys-
tem (Equations 15, 16 and 23).  The paper has pro-
vided a compact expression for the transference of a 
Purkinje system.  An expression has been obtained for 
the optical axis locator of a Purkinje system; it shows 
that the locator is necessarily singular.  This is a con-
clusion arrived at mathematically; the physical expla-
nation depends on the fact that every ray arriving nor-
mal to the reflecting surface necessarily retraces the 
same path backward through the system and so de-
fines one of an infinity of optical axes.  Although the 
results obtained here are interesting in their own right 
some are likely to be useful computationally; for ex-
ample, when estimating Purkinje transferences from 
multiple measurements made on an eye, one would 
want to build the particular features of the transfer-
ences into the algorithm.
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