
http://www.avehjournal.org Open Access

African Vision and Eye Health 
ISSN: (Online) 2410-1516, (Print) 2413-3183

Page 1 of 8 Review Article

Read online:
Scan this QR 
code with your 
smart phone or 
mobile device 
to read online.

Authors:
Elizabeth Chetty1 
Alan Rubin1 

Affiliations:
1Department of Optometry, 
Faculty of Health Sciences, 
University of Johannesburg, 
Johannesburg, South Africa

Corresponding author:
Elizabeth Chetty,
echetty@uj.ac.za

Dates:
Received: 18 Oct. 2021
Accepted: 04 Aug. 2022
Published: 08 Nov. 2022

How to cite this article:
Chetty E, Rubin A. A review 
of multivariate methods of 
analysing refractive data 
with dioptric power matrices. 
Afr Vision Eye Health. 
2022;81(1), a714. https://doi.
org/10.4102/aveh.v81i1.714

Copyright:
© 2022. The Author(s). 
Licensee: AOSIS. This work 
is licensed under the 
Creative Commons 
Attribution License.

Introduction
Multivariate statistical analysis provides a method to analyse the trivariate nature of 
dioptric power holistically, thus enabling one to evaluate the scalar (spherical) as well as the 
astigmatic changes that may occur. In earlier literature, the scalar axis was referred to as the 
stigmatic axis. Treating sphere, cylinder and axis as a univariate entity (spherical equivalent) 
diminishes the meaningfulness of conclusions drawn because astigmatic changes that may occur 
are diluted thereby. With the multivariate transformation of dioptric power, standard statistical 
calculations such as means, standard deviations and variances can be determined thus making 
hypothesis testing possible. Around the late seventies, the idea of analysing dioptric power 
with multivariate statistics was conceptualised by researchers such as Long,1 Keating2,3,4 and 
Harris.5 Over the decades, work done by Harris5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25 and others 
including Thibos et al.,26 for example, led to the development of the multivariate methods of 
analysis that are available today to analyse dioptric power in its entirety. The matrix 
representation of dioptric power and the ability to add, average and square sphero-cylindrical 
powers allows for variances and standard deviations, as well as other multivariate statistics, 
to  be calculated,6 which were thought to be impossible for such data.27 These methods of 
analysing refractive and keratometric data have been used frequently in research,28,29,30,31,32,33,34 
and the aim of this review is to provide a simplified overview of the multivariate methods of 
analysis of dioptric power so that readers of such research can better understand the analysis 
used in those studies. The data used in the examples provided are measurements taken on 
patients with keratoconus (KC). There have not been many other studies done on KC patients 
using this sort of analysis.

Background: There are three components to refractive state, namely sphere, cylinder and axis. 
Similarly, central corneal power is also composed of three components, namely the power 
along the flat meridian, the power along the steep meridian and the axis of the flat meridian. 
Most studies that investigate refractive data and corneal power analyse each of the three 
components individually rather than as a trivariate entity. In doing so, pertinent information 
may inadvertently be omitted. 

Aim: The purpose of this review is to provide a brief overview of the multivariate statistics 
that are available to analyse multivariate data such as dioptric power. This will enable 
readers to better understand research that is analysed using these methods. 

Method: An extensive review of databases such as Google Scholar, Science Direct and 
ResearchGate was done to gather publications on the topic of multivariate statistical 
analysis. Keywords such as multivariate statistical analysis, dioptric power, stereo-pairs, polar 
profiles and hypothesis testing were used to conduct the search.

Results: The debate for the need to analyse dioptric power using multivariate statistical 
methods has been a long-standing one. For this review, more than 40 publications were 
analysed to provide a simplified overview of the multivariate statistical methods that can be 
used to analyse dioptric power. 

Conclusion: The use of multivariate statistical methods is a valuable tool in analysing 
and understanding dioptric power holistically and may provide more insights for research 
involving refractive error and corneal power. 

Keywords: multivariate statistical analysis; dioptric power space; dioptric power; stereo-
pairs; polar profiles; hypothesis testing.
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The matrix representation of 
dioptric power
A m × n matrix (m rows by n columns) is a linear algebra 
mathematical concept defined by a set of entries or elements 
placed in a specific arrangement. According to Harris,5 
credit should go to H Fick35 and W.F. Long1 who pioneered 
the idea that dioptric power could be expressed as a 2 × 2 
matrix. For sphero-cylindrical power, this 2 × 2 matrix is 
symmetric; that is, the off-diagonal entries are equal; 
therefore, there are only three distinct numbers just as there 
are three numbers (sphere, cylinder and axis) representing 
dioptric power in clinical notation. The unit of measurement of 
the dioptric power matrix is dioptres or inverse metres (m–1), 
whereas the  unit of measurement for a sphero-cylinder is a 
combination of dioptres (for sphere and cylinder power) 
and degrees (for axis). Consider the following 2 × 2 matrix:

=












f f
f f

F 11 12

21 22

.� [Eqn 1]

The positions of the elements, or entries, are described by 
the subscripts. The first number in the subscript defines the 
row and the second number defines the column in which the 
element is positioned. For example, f11 is the entry in row 1 
and column 1, f21 is the entry in row 2 and column 1. Each 
entry in the dioptric power matrix represents a particular 
characteristic of the dioptric power from which it was 
converted. The entries f11 and f22 link back directly to the 
curvital power in the horizontal and vertical meridians, 
respectively, while f12, which for a symmetric matrix is 
equal to f21, represents the torsional component of refractive 
power.5,12 

A set of formulae, which were derived to convert sphero-
cylindrical powers to a dioptric power matrix and vice versa 
are outlined. For conversion from clinical notation (sphere, 
cylinder and axis) to matrix representation1:

f11 = Fs + Fc sin2 a� [Eqn 2]

f12 = f21 = –Fc sin a cos a� [Eqn 3]

f22 = Fs + Fc cos2 a� [Eqn 4]

where Fs is sphere (D), Fc is cylinder (D) and a is axis (degrees). 

Conversion from matrix representation to clinical notation 
(sphere, cylinder and axis)2:

F t d4c
2= − − � [Eqn 5]

Fs = (t – Fc ) / 2� [Eqn 6]

tan a = (Fs – f11) / f12� [Eqn 7]

where t is the trace and d is the determinant and are defined by

t = f11 + f22� [Eqn 8]

and

d = f11 f22 – f12 f21,� [Eqn 9]

respectively. 

These equations work well for thin systems that meet 
the requirements when analysing clinical sphero-cylindrical 
data. However, thick systems, for example, the power of the 
human eye, are more complicated and require a distinct 
fourth element in the 2 × 2 matrix thereby rendering it 
asymmetric. This matter is beyond the scope of this overview 
and the interested reader is referred elsewhere.3,17,20,21,22 

The matrix is an orthodox mathematical concept; therefore, 
the whole field of linear algebra (matrix algebra) becomes 
available. With sphero-cylindrical power having a mathematical 
representation (the dioptric power matrix), any mathematical 
function is thus possible with refractive or keratometric data 
including calculating means and variances, which are two 
paramount statistics when comparing samples of data and 
making inferences for populations.11 All the statistical 
methods discussed in this review are based on the dioptric 
power matrix. Harris, Malan and Rubin36,37,38,39,40,41 contributed 
to the development of mathematical, statistical and software 
methods that were specifically designed to convert such 
data  into matrix representations for multivariate statistical 
analyses. Refractive powers and corneal powers can be 
converted into matrices so that they can be plotted in three-
dimensional symmetric dioptric power space. Thereafter all 
the statistical functions and methods required to analyse the 
data are carried out on the matrix equivalents. For corneal 
power, raw keratometric data (radii of curvature along 
principal meridians) must first be converted into conventional 
powers using a nominal refractive index (usually 1.3375) 
and  then into matrix representations. For the purposes of 
demonstrating the usefulness of the multivariate methods of 
analysis, the first author has used figures generated from 
data that were collected during her postgraduate doctoral 
studies.41 Central corneal power measurements were obtained 
for a sample of keratoconic and healthy control eyes and 
thereafter compared. 

Stereo-pair scatter plots
Multivariate statistical analysis of dioptric power is based on 
assumptions such as data normality and equality of variances, 
and if these assumptions are violated for a particular sample, 
then the inferences made on such data need to be treated 
with  caution. However, if that data were to be represented 
graphically, then the statistical inferences should be validated 
so that the conclusions drawn would be more meaningful.15 

Stereo-pair scatter plots provide a visual representation of 
dioptric power in its entirety without any underlying 
assumptions thus providing graphical substantiation to all 
statistical assertions made in a study. Each point in a scatter 
plot represents one refractive power or one corneal power 
that was converted from its sphero-cylindrical form to a 
matrix that is plotted in three-dimensional Euclidean space.16 
Thibos and others26 use vectors to perform similar analyses 
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but without stereo-pairs that can be useful in enhancing 
data visualisation and analysis. 

Work by Harris on representing dioptric power graphically 
evolved over the years to overcome shortcomings he found 
along the way.15,16,21,22 This lead to the development of a four-
dimensional space called dioptric power space for thick 
optical systems but which also has symmetric dioptric 
powers representing thin optical systems.16,21 Symmetric 
dioptric power space is the three-dimensional sub-space, 
which represents sphero-cylindrical powers such as those 
commonly analysed in optometric and ophthalmologic 
research. 

Harris22,23,24,25 represents symmetric dioptric power as: 

F = FI I + FJ J + FK K (or = Fst I + For J + Fob K)� [Eqn 10]

also written as

F = FI + FJ + FK (or = Fst + For + Fob)� [Eqn 11]

or as a coordinate vector 
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� [Eqn 12]

where I, J and K represent the basis matrices 1 0
0 1
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, respectively, and FI (= Fst), FJ  

(= For) and FK (= Fob) are scalars defined by:

FI = ½ (  f11 + f22) = Fs + ½ Fc� [Eqn 13]

FJ = ½ (  f11– f22) = – ½ Fc cos 2a� [Eqn 14]

FK = ½ (  f21+ f12) = – ½ Fc sin 2a.� [Eqn 15]

The unit of measurement for the scalars Fst, For and Fob is 
dioptres; however, the matrices I, J and K do not have units. 
More recently, FI, FJ and FK are used for Fst, For and Fob, 

respectively. The scalar quantities here are the same as M, J0 
and J45 of Thibos and others.26

FII, FJJ and FKK (or FI, FJ and FK, respectively) are matrices 
that  can be graphed along three mutually orthogonal axes 
(in  three-dimensional dioptric power space), that is, axes 
along which any dioptric power can be plotted (see Figure 1 
for an example of stereo-pairs with 95% distribution 
ellipsoids  [discussed later]). FII is the scalar axis and 
represents the spherical component of power. The plane 
orthogonal to the FII axis is the plane of all Jackson cross 
cylinder (JCC) powers or symmetric antistigmatic powers. 
This plane comprises the ortho-antistigmatic powers (FJJ) 
with principal meridians along 0° and 180° and the oblique 
antistigmatic powers (FKK) with principal meridians 
along 45° and 135°. The antistigmatic plane in which the two 
antistigmatic axes are found contains all powers that are JCC. 

Variation in this plane represents variation in JCC powers, 
which is a type of astigmatic variation. More completely, 
however, astigmatic variation includes any variation in 
symmetric dioptric power space that excludes variation 
along the scalar axis only. To appreciate the three-dimensional 
nature of the data in the stereo-pairs, one is required to let 
one’s eyes drift into an exo- or eso-position. Using this sort of 
graphical representation of dioptric power makes it easy to 
make comparisons between two or more samples. For 
example, Figure 1a represents 40 consecutive central corneal 
power measurements taken on a single keratoconic eye, and 
Figure 1b represents 40 consecutive central corneal power 
measurements taken on a single healthy control eye. 
Immediately, one can see that there is greater variation in 
corneal power in the eye with KC when compared to the 
healthy eye. Another observation easily made is that the 
variation within the keratoconic eye is predominantly 
astigmatic or antistigmatic (the data points are scattered 
mostly along a direction near the antistigmatic plane that 
contains the other two axes), whereas the variation within the 
control eye is predominantly stigmatic (the data points are 
mostly scattered along the scalar axis with label 2I).

Ellipsoids 
An ellipsoid is the three-dimensional equivalent of an ellipse. 
For the purposes of this review, α = 0.05 therefore samples of 
dioptric power data can be used to generate 95% ellipsoids of 
constant probability density and 95% confidence ellipsoids 
for means. Other values can be used for α, which result in 
change in size and volume; however, the shape and 
orientation of the ellipsoid are maintained. The principal 
diameters and principal radii of an ellipsoid are measured 
along its three mutually orthogonal principal axes. The 
directions of these axes provide useful information when 

FIGURE 1: Stereo-pair scatter plots with 95% distribution ellipsoids of (a) 40 
consecutive central corneal power measurements taken on a single keratoconic 
eye and (b) 40 consecutive central corneal power measurements taken on a 
single control eye.41 The stereo-pairs have an axis length of 2 D and a tick interval 
of 1 D. The origin is placed at the sample mean for each stereo pair.
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making comparisons between samples or populations. Every 
ellipsoid has a centroid or centre (the sample mean). The 
position of the centroid is maintained regardless of the α 
used.15,16 

Ellipsoids of constant probability 
density
In multivariate statistics, analysis done on a random and 
normally distributed sample can be used to make inferences 
on the population from which the sample was obtained. A 
sample of dioptric powers can be used to generate 
ellipsoids of constant probability density (also referred to 
as distribution ellipsoids), which provide a graphical 
representation of the spread of dioptric power in a sample. 
The size, shape and orientation of these distribution 
ellipsoids characterise the nature of the variation of the 
population and provide a visual aid in making comparisons 
between populations.16 As can be seen from Figure 1, these 
distribution ellipsoids provide a visual indication of the 
nature of the variation of the dioptric power within the 
sample. One is able to easily identify differences between 
eyes with KC and control eyes by comparing the sizes, 
shapes and orientations of the distribution ellipsoids 
generated for different samples.41

Confidence ellipsoids 
While ellipsoids of constant probability density describe 
the  distribution of the population of, for example, dioptric 
power measurements, confidence ellipsoids are confidence 
regions centred on the sample mean.15,16 Confidence ellipsoids 
also  provide an estimation of the mean of the population. 
Therefore, for example, one can assume at a 95% level of 
confidence that the mean of a particular population of 
dioptric power measurements will lie within the respective 
95% confidence ellipsoid. Confidence ellipsoids also 
demonstrate the accuracy of the mean, that is, the smaller the 
95% confidence ellipsoid, the less variation is exhibited by 
the sample and the more confident one can be about the 
accuracy of the mean. If the confidence ellipsoids of two 
samples being compared do not intersect (Figure 2a), then 
one can argue at a known level of confidence (e.g. a 95% level 
of confidence more specifically) that a change in means did 
occur.17 The opposite applies when the confidence ellipsoids 
do intersect (Figure 2b). However, formal hypothesis 
tests15,17,19 are used to compare the variances and also means 
for the two samples concerned.

Means and variances and 
covariances of dioptric power
Adapted from Harris11,12,13,14,15,16,17: the average of a sample of n 
powers Fi is given by:

∑=
=n

F F1
i

i

n

1

� [Eqn 16]

The transpose of equation 12 is:

′ = 



F F Fv st or ob  or ′ = 



F F Ff I J K � [Eqn 17]

and therefore the mean coordinate vector can be given by:

∑ ∑=
n n

v v f f1   (or  = 1 ) i i � [Eqn 18]

and based on vector v the variance–covariance of dioptric 
power is given by:

∑ ∑ ) )) ) ( (( (=
−

− − ′
−

− − ′
= =n n

S v v v v S f f f f1
1

 (or  = 1
1

.i
i

n

i i
i

n

i
1 1 �

� [Eqn 19]

According to Harris,11: ‘…the mean is a value around which 
the sample clusters while the variance is a measure of 
the spread or dispersion of the cluster around the mean’. The 
mean and variance of a sample are statistical characteristics 
that are pertinent to finding correlations in data and drawing 
conclusions about the populations that the samples represent.

Harris6,9 discussed some of the methods used previously to 
average refractive error. He pointed out that while some of 
these methods led to the correct answer most times, there 
were instances where these methods were found to be 
incomplete or blatantly incorrect. An example of the naive 
mean was used to illustrate how analysis of data can be 
obscured.9 The example provided by Harris is as follows: the 
naive mean (obtained by averaging each component of 
a  sphero-cylindrical power individually) of 1 –1 × 1 and 
1 –1 × 179 was calculated to be 1 –1 × 90, which was clearly 
wrong. With the use of matrices,4,15 an explicit method of 

FIGURE 2: Stereo-pair scatter plots for central corneal power with 95% 
confidence ellipsoids for a single (a) keratoconic eye and a single (b) control eye. 
The axis length is 1 D, tick interval is 0.25 D and the origin is placed at the mean 
of the sample concerned. There were two measurement sessions for each 
participant in the study. Black represents Session one and red Session two. 
(Points are omitted to allow greater clarity with the small ellipsoids.) The 
intersection of confidence ellipsoids (or lack thereof) provides an indication of a 
change in the means over two measurement sessions.
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finding the mean of refractive errors was developed 
(see equation 16). The differences in means are a useful tool 
that can be used to identify changes over two measuring 
sessions for example. For instance, mean central corneal 
power measurements taken in Session one and Session two 
can be calculated and represented graphically with the aid of 
comets. Comets (see Figure 3) are drawn from the mean 
of  the first to the mean of the second set of measurements 
for each eye. The length and direction of the comet provides 
a visual perspective on the changes in central corneal power 
from the first to the second session. Comets enable us to 
visibly track the change in means from the first set to second 
set of measurements. The longer the tail of the comet, the 
greater is the difference in the means between the first and 
second sessions.

In each of the comets in Figure 3, the dot represents the mean 
of the first set of 40 central corneal power measurements, 
and  the end of the comet is the mean for the second set of 
40  central corneal power measurements for each eye 
measured. In Figure 3a, which represents keratoconic eyes, 
the majority of the comets are more closely aligned to the 
antistigmatic plane. This implies that there are mostly 
astigmatic changes in the means over the two sessions. The 
control eyes are represented in Figure 3b, where it is evident 
that there is mostly a stigmatic change in means over the two 
measuring sessions. This is evident by almost all the comets 
aligning along the scalar axis. The length of the comets 
representing the keratoconic eyes is also mostly longer 
than the length of the comets representing the control eyes. 
This indicates greater variation in means for keratoconic 
eyes than for healthy control eyes. 

Saunders26 asserted that dioptric power could not be squared, 
and hence the variance of a sample could not be calculated. 
Harris6,7,13,15 found this to be incorrect and showed for the 
first  time that variance–covariance matrices could be 
calculated for dioptric power. Equation 19 calculates a 
symmetric 3 × 3 variance–covariance matrix with the unit D2:

S S S
S S S
S S S

S D
11 12 13

21 22 32

31 32 33

2=



















.

There are six distinct entries in this matrix that describe the 
variances and covariance of a sample. The diagonal entries 
S11, S22 and S33 characterise the variances for FI, FJ and FK, 
respectively. The off-diagonal entries S12 = S21, S13= S31 and 
S23 = S32 characterise the covariances between FI and FJ, FI and 
FK and FJ and FK, respectively. The variances and covariances 
across the meridians of one or more eyes can be graphically 
represented by means of a polar profile.42

Polar profiles of variance–covariance
The variances and covariances across the meridians of one 
or  more eyes can be graphically represented using a polar 
profile (Figure 4) in which the reference meridian θ is from 0° 
to 180°. The solid line in the plot represents the curvital 
variance profile, which is the only profile, required to 
adequately describe the curvital nature of dioptric 
power variation across the meridians of the eye. The curvital 
variance profile is accompanied by the scaled torsional 

FIGURE 3: Stereo-pair scatter plots of comets joining the means of the 
measurements taken over two sessions: (a) for a group of eyes with keratoconus 
and (b) for a group of healthy control eyes. For each comet, the dot represents 
the mean of a set of 40 measurements taken in Session one for the eye 
concerned, and the comet ends at the mean of the measurements taken in 
Session two for the same eye. The origin is placed at the respective sample 
means. The axis lengths and tick intervals are 4 D and 1 D, respectively.
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FIGURE 4: Polar profiles of variation in central corneal power of (a) a keratoconic 
eye and (b) a control eye. The solid curve is curvital and the dash is torsional. 
The radial scale and outer circle (in dots) are set at 0.5 D2 and 0.025 D2 for (a) and 
(b), respectively. For the keratoconic eye, the meridian of greatest curvital 
variance is near 70° and torsional variance is maximal near 115°, whereas the 
control eye displays maximum curvital variation near 80° and maximum 
torsional variation near 120°. The variances for the control eye are much smaller 
than that of the keratoconic eye.
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variance profile (the dashed curve), which describes 
the  torsional nature of dioptric power variation across the 
meridians of the eye and makes the nature of dioptric power 
variation easier to visualise and quantify. 

If variation is purely scalar (spherical), then the scaled torsional 
variance profile will be reduced to a point at the origin of the 
polar plot, and the curvital variance profile becomes a semi-
circle of constant radius. When variation is uniform across all 
meridians of the eye both profiles take on a semi-circular 
shape. If variation is non-uniform, then profiles depart from 
being semi-circles. The torsional variance profile often assumes 
the shape of a pair of ‘rabbit ears’ as described by Van Gool42 
and seen in Figure 4. The characteristics of the rabbit ears 
provide useful information about dioptric power variation 
across the meridians of the eye. The pair of ears is symmetrical 
and always 90° apart and the maximum and minimum 
magnitude can be determined from the position of the ears. As 
established by Van Gool42 and also shown by Gillan,33 there 
appears to be a strong correlation between the position of the 
rabbit ears and the major axis of the corresponding distribution 
ellipsoid. If, for example, the rabbit ears orientate symmetrically 
about the 90° axis, then one can expect to find the major axis of 
the corresponding distribution ellipsoid orientated parallel to 
the antistigmatic plane when viewed straight down the 
stigmatic axis. The following two examples are provided to 
illustrate how central corneal power varies across all the 
meridians of the eye and not just within the principal meridians 
as indicated by many researchers who analyse this sort of data 
only along the horizontal and/or vertical meridians.

For Figure 4, each polar plot contains the polar profiles for (1) 
central corneal power measurements taken on a single 
keratoconic eye and (2) central corneal power measurements 
taken on a single control eye. In each plot, the solid blue 
curve represents the curvital variance profile and the dashed 
blue curve represents the scaled torsional variance profile for 
the dioptric power measurements of the first  session. The 
meridians are labelled from 0° to 180° in 30° intervals for all 
polar plots; however, the scale of the plots differ for optimal 
representation and is specified for each eye.

Figures 4b shows that for the control eye, the scaled torsional 
variance profile (dashed curve) appears within the curvital 
variance profile (solid curve); therefore, this eye experiences 
greater curvital dioptric power variation than torsional 
dioptric power variation. Contrary to that, the keratoconic 
eye (Figure 4a) exhibits greater amounts of torsional variation 
than for the control eye and especially when the differences 
in radial scales are taken into consideration. This is evident 
by the dashed line (torsional variance) that sometimes even 
extends beyond the solid curve (curvital variance).

Note that the scales are different for the two polar plots, and 
thus they cannot be so easily compared directly in terms of 
magnitude of variation. However, on closer inspection of the 
figures, one would note that the keratoconic eye exhibits the 
most variation and the control eye exhibits the least variation, 

irrespective of type of variation (i.e. curvital or torsional). 
The use of polar plots highlights clearly that dioptric power 
variation is not isolated to only principal meridians or the 
horizontal and vertical meridians (180° and 90°) and that 
there is also a torsional component of variation (albeit small 
in healthy eyes) that accompanies the curvital variation. This 
is an important finding and this method of analysis  
(i.e. polar plots of variance) tends to be ignored or 
misunderstood in more traditional dioptric power analysis. 

Multivariate hypothesis testing 
Hypothesis testing forms an integral part of statistical 
analysis. It allows one to make assumptions at a certain level 
of confidence regarding a population. The multivariate test 
statistic w is a generalisation of the univariate t 2 statistic. 
Details on these statistics and their respective definitions 
are  provided elsewhere15 for a more comprehensive 
understanding. Hypothesis tests are conducted on the 
variance–covariances and means for all sets of measurements. 
For example, the equality of variance–covariances and 
means for a set of dioptric power measurements taken in a 
first session can be tested against the variance–covariances 
and means for the dioptric power measurements taken in a 
second session. For μv and Σvv representing the mean and 
the variance–covariances of a population of dioptric power 
data, the hypothesis tests are as follows:15,19

For testing means, the null hypothesis

H0: μv = µµV
0

is tested against the alternative hypothesis

H1: μv ≠ µµV
0

and the test statistic is given by 

µµ µµ( ) ( ) ( )[ ]( )= − − − −
′′ −w n n m m nv S v / 1 .V VV V

0 1 0 � [Eqn 20]

The null hypothesis is rejected if the test statistic is greater 
than or equal to the critical value, that is,

w ≥ F α, m, n – m 

in which F is found in Snedecor’s F-distribution chart by α, m 
and n – m, which represent the level of significance, degrees 
of freedom in the numerator and degrees of freedom in the 
denominator, respectively. 

For example, α = 0.05, m = 3 and n – m = 76, which resulted 
in F = 2.725.

For testing variance–covariances, the null hypothesis

H0: Σ = Σ0

is tested against the alternative hypothesis

H1: Σ ≠ Σ0

and the test statistic is given by 

http://www.avehjournal.org�
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L = (N – 1 [log{detΣ0} – log{detS} + tr{SΣ0
– 1}] – p).� [Eqn 21]

The null hypothesis is rejected if the test statistic is greater 
than the critical value, that is,

L > χ 
2
 α, p( p + 1)/2

where χ 2 can be found in the chi square distribution table. For 
example, α = 0.05 and the critical value is 12.592.

The underlying assumption when conducting hypothesis 
tests on means is that Σ = Σ0. An adequate alternative for 
cases where Σ ≠ Σ0 has not been found, and this is referred to 
as the Behrens–Fisher problem.19

Multivariate normality 
Multivariate statistical analysis is generally based on the 
assumptions of random selection and multivariate normality 
of samples. Multivariate normality is modelled with respect 
to the bell-shaped curve and the associated assumptions 
that  the distribution is continuous, perfectly symmetrical, 
unskewed and mesokurtic and that the mean, median 
and  mode are all equal.43 Because of the nature of sphero-
cylindrical data one or more of these underlying assumptions 
are not always met. While the solution to the problem has not 
yet been discovered and therefore cannot be circumvented, 
one continues with the statistical analysis and is prudent 
with the interpretation of the results. 

Multivariate normality can be investigated with the aid of 
various tools such as skewness and kurtosis, identification 

of possible outliers (using Mahalanobis distances; Figure 5) 
and the comparison of means and medians of the samples. 
An  online statistical tool, WebPower statistical power 
analysis online,44 can be used to calculate the skewness 
and kurtosis for multivariate samples such as dioptric 
power. The developers of this programme discuss how the 
calculations are done to arrive at a b-value, z-value and an 
associated p-value for skewness and kurtosis. The details 
thereof are beyond the scope of this review and the 
interested reader is referred to Cain et al.45 Possible outliers 
are assumed atypical in the sample and may be subjectively 
identified as one or more data points that appear to be 
far  removed from the cluster of data. The Mahalanobis 
distance is an objective method to quantify the distance so 
that one can identify possible outliers more accurately. 
Figure 4 illustrates an example of the Mahalanobis distances 
that were calculated for a multivariate sample. 

Conclusion
Multivariate methods of analysis are especially pertinent 
when investigating keratometric and refractive power 
data, which is fundamentally trivariate in nature. With the 
aid of multivariate methods of analysis, keratometric and 
refractive data would be represented in their entirety; that 
is, all three components of sphere, cylinder and axis would 
be used to plot data on three-dimensional stereo-pairs 
that  have distinct advantages, for data visualisation and 
quantitative analysis in comparison to other methods that 
use vector analysis in two-dimensional space only. Although 
some of these methods may seem complicated at first, this 
review offers a simplified overview of some multivariate 

FIGURE 5: The Mahalanobis distances for central corneal power measurements.41 None of the 40 measurements for a single eye reach the critical distance (or percentage) 
that would imply possible outliers (≤ 90%).
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methods of analysis that are available to analyse dioptric 
power holistically.
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