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Abstract

The ray transference is central to the understand-
ing of the first-order optical character of an optical 
system including the visual optical system of the 
eye.  It can be calculated for dioptric and catadiop-
tric systems from a knowledge of curvatures, tilts 
and spacing of surfaces in the system provided the 
material between successive surfaces has a uniform 
index of refraction.  However the index of the natu-
ral lens of the eye is not uniform but varies with 
position.  There is a need, therefore, for a method of 
calculating the transference of systems containing 
such gradient-index elements.  As a first step this 

paper shows that the transference of elements in 
which the index varies radially can be obtained di-
rectly from published formulae.  The transferences 
of radial-gradient systems are examined.  Expres-
sions are derived for several properties including 
the power, the front- and back-surface powers and 
the locations of the cardinal points.  Equations are 
obtained for rays through such systems and for the 
locations of images of object points through them.  
Numerical examples are presented in the appen-
dix. (S Afr Optom 2012 71(2) 57-63)

Key Words: gradient index, transference, cardi-
nal points, stigmatic system.

Introduction

Introduced into optometry under the name system 
matrix by Keating1-3 the ray transference, or simply 
the transference, is fundamental for a holistic under-
standing of the first-order optical character of the eye.  
If curvatures, tilts, separations and refractive indices 
are known the transference can be calculated for a 
dioptric system and for the visual optical system of 
a model eye in particular.  We now also know how 
to calculate it for catadioptric systems including the 
Purkinje systems associated with the four Purkinje 
images in the eye4, 5.  The assumption underlying 
these analyses, however, has been that the media be-
tween successive refracting surfaces have uniform 
refractive indices.  Applications to the eye have had 
to make the less-than-satisfactory-assumption that the 
natural lens of the eye in particular has a uniform in-
dex.  An improved approach would allow one to han-
dle materials whose indices vary with position.  The 

question is: How can one obtain the transference of a 
system containing gradient-index material?  Actually 
it is not obvious that transferences of such systems 
exist at all; indeed one even hears the occasional as-
sertion that they do not exist.  The purpose of this 
paper is to show that the transference does exist for a 
particular gradient-index system and to obtain an ex-
plicit expression for it.  The index of the medium var-
ies radially, that is, perpendicular to the optical axis.

Marchand6 presents equations for the paraxial 
behaviour of rays in a system in which the index of 
refraction is a parabolic function of radius.  We sum-
marize these equations and then show how they lead 
directly to expressions for the transferences of sys-
tems made up of such material.  We check that the 
transferences are symplectic and examine some of 
their features.  We illustrate the use of the transfer-
ences by obtaining expressions for several properties 
of the system including the power, vertex powers and 
the locations of the cardinal points of the systems.
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Marchand’s equations
Figure 1 represents an optical system S with longi-

tudinal axis Z and entrance and exit planes T0 and T1.  
Z is in fact the optical axis of the system.  The radius 
r is measured from and orthogonal to Z.  The index n 
varies radially, that is, n = n(r) .  Upstream of T0 the 
index n0 is uniform and downstream of T1 the index   
n1  is uniform.

Figure 1  A radial-gradient system S of length z.  Z is the longi-
tudinal axis and T0 and T1 the entrance and exit planes respec-
tively.  Within S the index is a parabolic function of radius r.  
Outside S the index is uniform being n0 upstream of T0 and n0 
downstream of T1.  Y1 and Y2 are horizontal and vertical axes 
respectively.

Following Marchand6 we represent the index as an 
infinite series in r and truncate after the term in r2.  In 
order to make the function invariant under rotation 
about axis Z we remove the term in r.  The result is 
the parabolic equation

n = na + kr2					                  (1)

with two constants na and k. na is the axial index of 
refraction.  For k < 0  the index decreases away from 
axis Z; for k > 0  it increases away from Z.  We shall 
refer to S in the former case as a decreasing radial-
gradient system and in the latter case as an increasing 
radial-gradient system.

Consider a ray traversing system S.  It is incident 

with transverse position
 

y0 =
y01
y02

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ and emerges at

 

transverse position
 

y1 =
y11
y12

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .  The Cartesian co-

ordinates are with respect to horizontal and vertical 
axes Y1 and Y2 orthogonal to Z.  The ray’s inclina-

tions at incidence and emergence are a0 and a1 respec-
tively, also with coordinates with respect to horizontal 
and vertical axes just as for y0 and y1.  The reduced 
inclinations are α0 = n0a0 and α1 = n1a1.

Snell’s equation for refraction applied across the 
first surface of the system shows that, although the 
inclination changes, the reduced inclination does not.  
It follows that y0 and α0, defined immediately outside 
the system, also represent the transverse position and 
reduced inclination immediately inside the system.  
Similarly y1 and α1 do not change across the last sur-
face of the system.

Marchand6 defines
 								      

b = 2kna 					             
(2)

and
η= bz / na  .					             (3)

b is a reciprocal length (it has the same units as diop-
tric power).  η is unitless; it increases in direct propor-
tion to the length z.  For some purposes it is useful to 
think of it as an angle (in radians).

For decreasing radial-gradient systems (k < 0) 
Marchand shows that paraxial rays emerge with com-
ponents of transverse position

y11 = y01 cosη+
α01
b
sinη

			            
(4)

and					   

y12 = y02 cosη+
α02
b
sinη

			            
(5)

and reduced inclination
α11 = α01 cosη−by01 sinη 			            (6)
and
α12 = α02 cosη−by02 sinη .                                        (7)

For increasing radial-gradient systems (k > 0) the 
equations are similar but are in terms of hyperbolic 
functions:

y11 = y01 coshη+
α01
b
sinhη

			             
(8)

and

y12 = y02 coshη+
α02
b
sinhη

			             
(9)

and reduced inclination
α11 = α01 coshη+by01 sinhη 			            (10)
and
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α12 = α02 coshη+by02 sinhη .			          (11)

Note the presence of minus signs in Equations 6 and 7 
and their absence in corresponding Equations 10 and 
11.

Transferences

Equations 4 to 7 can be combined into the single 
matrix equation

						            (12)

as multiplication readily confirms.  Hence we can 
write

Icosη I 1
b
sinη

−Ibsinη Icosη

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

y0
α0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

y1
α1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 	       

(13)

where I is the 2 × 2  identity matrix.  Thus we have the 
basic equation of linear optics
Sρ0 = ρ1					              (14)
where

S = Icosη I 1
b
sinη

−Ibsinη Icosη

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
 			         

(15)

is the transference of the system.  Equation 15, there-
fore, gives the 4 × 4 transference of a decreasing radi-
al-gradient system with b and η defined by Equations 
2 and 3 respectively.

In the same way Equations 8 to 11 lead to the con-
clusion that

S = Icoshη I 1
b
sinhη

Ibsinhη Icoshη

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

			            

(16)

is the transference of an increasing radial-gradient 
system.  Note the minus sign in Equation 15 and its 
absence in Equation 16.
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Because of the general expression

S = A B
C D

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

			                          
(17)

Equations 15 and 16 give the dilation A, the disju-
gacy B, the divergence C and the divarication D of a 
system with a radial gradient.  Equations 15 and 16 
show explicitly that such systems have transferences 
of the form

S = IA IB
IC ID

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

				             
(18)

which confirms that they are stigmatic.  A, B, C and 
D are the scalar dilation, scalar disjugacy, etc., of the 
system.

It is immediately apparent from Equations 15 and 
16 that
A = D 						               (19)
for both increasing and decreasing radial-gradient 
systems.

Symplecticity

Before venturing further we need to confirm that 
the transferences are symplectic7, that is, that they 
satisfy
STES = E .					              (20)
where

 
E := O I

−I O

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .				             (21)

Substitution from Equations 15 and 16 shows that 
they are indeed symplectic.  Demonstrating symplec-
ticity in the case of Equation 16 requires use of the 
identity
(cosh η)2 − (sinh η)2 =1.			              (22)

Decreasing radial-gradient systems

Consider systems with k < 0 ; the index is a maxi-
mum on longitudinal axis Z and decreases radially 
outward.  The transference is given by Equation 15.  
A numerical example is given in the Appendix.

The scalar fundamental properties are all repre-
sented as sine waves in the length z of the system.  
Their magnitudes are given by

 A = D ≤1,					            (23)

cosη 0 1
b
sinη 0

0 cosη 0 1
b
sinη

−bsinη 0 cosη 0
0 −bsinη 0 cosη

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

y01
y02
α01
α02

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟

=

y11
y12
α11
α12

⎛

⎝

⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟⎟
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 B ≤1/ b 					            (24)

and

 C ≤ b .					             (25)

The disjugacy and divergence always have opposite 
signs.  For z = 0 Equation 3 reduces to η = 0 and, 
hence, Equation 15 reduces, as expected, to
S = I						             (26)
where I is the 4 × 4  identity matrix.  Because b and na   
are always positive η always increases from 0 as z increases 
from 0.  Hence the scalar dilation A = cosη = D decreases 

from 1 while the scalar disjugacy B = 1
b
sinη

 
increases 

from 0 and the scalar divergence C = −bsinη  de-
creases from 0.  When
 z = πna / 2b,			            		         (27)
that is, η = π/2  (by Equation 3),

 

S = O I 1
b

−Ib O

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

.				          (28)

When
z = πna

 / b 					             (29)
η = π and the transference of the system is
S = − I.					            (30)
When
z = zm = 2πna

 / b 				           (31)
η = 2π and the transference is given by Equation 26 
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again.  The same is true for z equal to any integral 
multiple of zm.  We see that decreasing radial-gradi-
ent systems are periodic in z with period zm. One can 
think of  zm  as the wavelength of the system.

By definition8 the dioptric power of a system is 
F = −C.  Thus a decreasing radial-gradient system 
has power
F = Ibsin η.					            (32)
Its scalar power is F = bsin η.  Depending on the 
length of the system its scalar power lies between −b  
and b.

In general the back- and front-vertex powers of a 
system are given by Fbv = FA−1 and  Ffv = D−1F re-
spectively.9  It follows that, for a decreasing radial-
gradient system, 
Fbv= Ffv = Ibtan η.		         (33)

Relative to the entrance plane an incident special point 
of characteristic X has axial position zQ0 = n0(D − X)/C 
and relative to the exit plane an emergent special point 
has axial position zQ1 = −n1(A − 1/X)/C.10, 11  Thus a 
decreasing radial-gradient system has incident and 
emergent special points with locations		

zQ0 = −n0
cosη− X
bsinη 				            

(34)

and

zQ1 = n1
cosη−1/ X
bsinη 				           

(35)

respectively.  It follows that the cardinal points of the 
system are located as summarized in Table 1.

Table 1  Axial positions zQ0  and zQ1 and characteristic X of the incident and emergent cardinal points Q0 and Q1 relative to the 
entrance T0 and exit T1 planes of a decreasing radial-gradient system.
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Let us now extend the system by adding a homoge-
neous gap of width z0 and index n0 upstream (reduced 
width ζ0 = z0 / n0) and a second homogeneous gap of 
width z1 and index n1 downstream.  The compound 
system has transference

 

I Iζ1
O I

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Icosη I 1
b
sinη

−Ibsinη Icosη

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

I Iζ0
O I

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ (36)

Multiplication shows that the compound system has 
scalar disjugacy

ζ0 +ζ1( )cosη+ 1
b
−bζ0ζ1

⎛

⎝
⎜

⎞

⎠
⎟sinη

 
.		         (37)

Equating this expression to 0 gives the condition that 
the compound system is conjugate, that is, an object 
point on its entrance plane will produce an image 
point on its exit plane.  Equating the expression to 0 
and solving we obtain

ζ1 =
ζ0 +

1
b
tanη

bζ0 tanη−1
.				          (38)

This equation gives the axial location of the image of 
an object point through the decreasing radial-gradient 
system.

From Equations 13 and 3 we obtain

y0 cos
bz
na
+α0

1
b
sin bz
na
= y1 .			          (39)

This is simply a combination of two of Marchand’s6 
equations (Equations 4 and 5).  It is the equation 
through the system of a ray that is incident with trans-
verse position y0  and reduced inclination α0 .  In par-
ticular consider a ray that enters the system at trans-

verse position
 

0
y02

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
 
and with reduced inclination

  

α01
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ .  Equation 39 reduces to

α01
1
b
sin bz
na

y02 cos
bz
na

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
y11
y12

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.			         (40)

If  α01 = 0, that is, the ray is incident parallel to longi-
tudinal axis Z, then the ray obeys

 
y02 cos

bz
na
= y12 .				           (41)

The ray is a sine wave in the vertical meridian.  If, in-
stead, α01 = by02 then it follows from Equation 40 that 

y11
2 + y12

2 = y02
2 .  This means that at every cross sec-

tion along the system the ray is at the same distance 
r = y02  from axis Z.  Equation 40 becomes the para-
metric equation of a circular helix.  In fact the ray is a 
helix with pitch zm (Equation 31), radius r and axis Z.

Increasing radial-gradient systems

For k > 0  the index increases radially outward 
from a minimum on longitudinal axis Z.  The trans-
ference is given by Equation 16.  See the Appendix 
for a numerical example.

Now
sin η = (eη − e−η )/2 				            (42)
and
cosh η = (eη + e−η )/2 .				           (43)
It follows from Equation 43 that
A = D ≥ 1					            (44)
and from Equation 42 that
B ≥ 0 						              (45)
and
C ≥ 0.						              (46)
Thus none of the entries of the transference of a de-
creasing radial-gradient system can be negative.  For   
z = 0 the transference is again the identity matrix 
(Equation 26).  As z increases all the scalar fundamen-
tal properties increase monotonically without limit.  
In strong contrast to the case with decreasing radial-
gradient systems there is no periodic behaviour.

From Equation 16 we see that
F = − Ibsin η.					             (47)
This shows that F ≤ 0.  Thus the scalar power de-
creases from 0 without limit as the length z of the sys-
tem increases.  The scalar power of every increasing 
radial-gradient system of positive thickness is nega-
tive.  This contrasts with decreasing radial-gradient 
systems whose power may be negative, zero or posi-
tive.

The front- and back-vertex powers are given by
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Fbv = Ffv = − Ibtanh η .			         (48)
Thus as z increases from 0 the scalar vertex powers 
decrease from 0 and approach the fixed value −b for 
large z.  ( tanhη→1 as η→∞ .)

The special points are located according to

 
zQ0 = n0

coshη− X
bsinhη 				            

(49)

and

 
zQ1 = −n1

coshη−1/ X
bsinhη

.			          (50)

The locations of the cardinal points in particular are 
listed in Table 2.

Following the same procedure used above in the 
case of decreasing radial-gradient systems we find 
that an image point is located according to

ζ1 = −
ζ0 +

1
b
tanhη

bζ0 tanhη+1
.				           (51)

A ray through the system obeys

 
y0 cosh

bz
na
+α0

1
b
sinh bz

na
= y1 .		          (52)

In particular for
 
y0 =

0
y02

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 
and

  
α0 =

α01
0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

α01
1
b
sinh bz

na

y02 cosh
bz
na

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
y11
y12

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

.			           (53)

Both components grow without limit; the ray deviates 
increasingly from the longitudinal axis.

Concluding remarks

We have obtained here the transferences of optical 
systems with refractive index that varies radially.  As 
far as we are aware this represents the first calcula-
tion of a transference of a system containing gradient-
index material.

Radial-gradient systems fall into two classes, those 
with index a maximum along the optical axis and 
those with the index a minimum along the axis.  In 
the case of the former the index falls off with increas-
ing distance from the axis; such systems have trans-
ferences given by Equation 15.  The trigonometric 
functions give the system a periodic structure.  Rays 
in effect are attracted towards the optical axis.  They 
travel through the system oscillating or rotating about 
the axis.  An optical fibre is an example of a system 
of this type.  On the other hand radial-gradient sys-
tems in which the index increases away from the axis 
have no periodic structure (the transference is given 
by Equation 16); rays tend to be repelled, as it were, 
by the optical axis.  They splay outwards at increasing 
angles and tend to leave the system at its sides.

The transferences of radial-index systems are 
shown explicitly to be symplectic as they must be in 
linear optics.

Formulae have been derived here for the power 
and front- and back-vertex powers of radial-index 
systems and for the locations of their cardinal and 
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Table 2  Axial positions zQ0  and zQ1 and characteristic X of the incident and emergent cardinal points Q0 and Q1 relative to the 
entrance T0 and exit T1 planes of a decreasing radial-gradient system.



S Afr Optom 2012 71(2) 57-63                                                             	                WF Harris - Ray transference of a system with radial gradient index 

The South African Optometrist  			        ISSN 0378-9411

other special points.  The systems form images of ob-
jects.  Formulae for the locations of image points are 
presented.
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Appendix
	
We make the arbitrary choice of na  = 1.45 and k  

= –0.002 mm–2 in Equation 1 and choose the system 
to have length z = 5 mm.  Because k is negative the 
system is a decreasing radial-gradient system.  Equa-
tions 2 and 3 give b = 0.0762 mm–1 and η = 0.2626.  
Equation 31 shows that the system has wavelength 
of   zm  = 119.6 mm.  From Equation 15 we obtain the 
transference of the system:

S = 0.9657I 3.4088I mm
−0.0198I mm−1  0.9757I

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟ .

Thus the scalar power of the system is F  = 19.8 D and 
the scalar vertex powers Fbv  = Ffv  = 20.5 D.

We retain the same numerical values except that 
now we reverse the sign of k, that is, k  = 0.002mm–2.  
Now we have an increasing radial-gradient system.  b 
and   η are unchanged.  From Equation 16 we find that 
the system’s transference is

S = 1.0347I 3.4880I mm
0.0202I mm−1  1.0347I

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ .

Its scalar power is F = –20.2 D and its scalar vertex 
powers are Fbv  = Ffv  = –19.6 D.
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