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Abstract

A previous paper develops the general theory of 
aperture referral in linear optics and shows how 
several ostensibly distinct concepts, including 
the blur patch on the retina, the effective corneal 
patch, the projective field and the field of view, are 
now unified as particular applications of the gen-
eral theory.  The theory allows for astigmatism and 
heterocentricity.  Symplecticity and the generality 
of the approach, however, make it difficult to gain 
insight and mean that the material is not accessible 
to readers unfamiliar with matrices and linear alge-
bra.  The purpose of this paper is to examine what 
is, perhaps, the most important special case, that in 
which astigmatism is ignored.  Symplecticity and, 
hence, the mathematics become greatly simplified.  
The mathematics reduces largely to elementary 

vector algebra and, in some places, simple scalar 
algebra and yet retains the mathematical form of 
the general approach.  As a result the paper allows 
insight into and provides a stepping stone to the 
general theory.  Under referral an aperture under-
goes simple scalar magnification and transverse 
translation.  The paper pays particular attention to 
referral to transverse planes in the neighbourhood 
of a focal point where the magnification may be 
positive, zero or negative.  Circular apertures are 
treated as special cases of elliptical apertures and 
the meaning of referred apertures of negative ra-
dius is explained briefly. (S Afr Optom 2012 71(1) 
3-11)

Key Words: aperture referral, stigmatic systems, 
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Introduction

The blur patch on the retina, the effective patch on 
the cornea, or on any refracting surface, the projec-
tive field of a retinal point and the field of view of an 
optical instrument, all important in vision, are usually 
thought of as distinct concepts that need to be treated 
separately.  A recent paper1 shows, however, that each 
is a special case of a general phenomenon described 
there as aperture referral.  The concepts represent the 
action of an aperture, often the pupil of the eye, tak-
ing place as it were at some other axial position in the 
system.  The paper1 uses linear optics to develop a 
general theory of aperture referral for general dioptric 
systems whose refracting elements may be heterocen-
tric and astigmatic.

Allowance for astigmatism in the general theory 
means that symplecticity takes its full form.  Conse-
quently the mathematics is complicated, qualitative 
insight is difficult to obtain and many readers find 
the material inaccessible.  Here we treat the special 
case in which all refracting elements are stigmatic.  In 
other words we exclude astigmatism.  The exclusion 
of astigmatism greatly simplifies the mathematics but 
retains much of the essential mathematical structure.  
In effect, because of symplecticity, the transference of 
an optical system simplifies from 20 numbers related 
by six equations to only eight related by only one 
equation.  (Results concerning simplecticity in the 
context of linear optics are summarized elsewhere2.)  
What is a problem in linear algebra becomes, more 
or less, a problem in the much more familiar vector 
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algebra.  It becomes much easier to visualize what is 
happening and the special theory provides a stepping 
stone to the general theory.  Thus it gives insight into 
the general theory that one cannot get in any other 
way.  The purpose of this paper, then, is to examine 
aperture referral in dioptric systems containing only 
stigmatic refracting elements.  The surfaces may be 
decentred or tilted.  We shall also allow apertures to 
be elliptical and decentred.  Circular apertures are 
treated as a special case.

Transferences of systems with stigmatic elements

An optical system S has transference (5×5 ) 	
							     

			           

(1)

where A (the dilation), B (the disjugacy), C (the di-
vergence) and D (the divarication) are the four  2×2  
fundamental properties of S, e (the transverse transla-
tion) and π  (the deflectance) are the two 2×1  funda-
mental properties and oT is the matrix transpose of the 
2×1 null matrix o.  e and π  account for decentration 
or tilt of refracting surfaces in the system.  Together 
the six fundamental properties represent 20 numbers.  
The top-left submatrix of 2×2  fundamental proper-
ties is symplectic; results for such matrices are sum-
marized elsewhere2.  For more information on the 
transference the reader is referred to previous papers1, 

3.
If the longitudinal axis coincides with the optical 

axis4 of the system e and π  are null and one can elim-
inate the fifth row and column and reduce the trans-
ference to 4×4 .

By a stigmatic refracting element we mean either a 
refracting surface that is not astigmatic (it is invariant 
under rotation about a normal) or a gap of material 
that is homogeneous and isotropic.  We make the fol-
lowing assertion: every dioptric system all of whose 
elements are stigmatic has transference

 			           

(2)

where I is the 2×2  identity matrix.  A, B, C and D 
are scalars; we shall call them the four scalar funda-
mental properties of the system.  Thus for a system 
with only stigmatic refracting elements the dilation 
A is a scalar matrix IA.  We shall also call A the dila-
tion.  The same holds for the other 2×2  fundamental 
properties.  Because of symplecticity the scalar fun-
damental properties are related by

AD−BC =1 .		                                              (3)
A, B, C, D, e and π  make up the eight numbers re-
ferred to in the Introduction above and Equation 3 
represents the single equation that relates them.

The assertion made above is obviously true for 
refracting elements: a stigmatic refracting surface 
has A=D=1, B=0 and C equal to the negative of the 
(spherical) power F and a homogeneous gap has 
A=D=1, C=0 and B equal to the reduced length of the 
gap.  Consider now any compound system made up of 
refracting elements.  Its transference can be obtained 
by multiplying the transferences of the elements.  But 
multiplication of any two matrices of the form in 
Equation 1 results in a matrix of the same form as can 
be readily confirmed.  This proves the assertion.

We note in passing that the set of all transferences 
of the form of Equation 2 satisfies all four axioms 
of a group in mathematics: closure under multipli-
cation as we have just seen; associativity (because 
(T1T2)T3=T1(T2T3)); existence of an identity (the
5×5  identity matrix, which is the transference of a 
homogeneous gap of zero width and of a flat refract-
ing surface orthogonal to the longitudinal axis); and 
existence of an inverse T −1 corresponding to every T 
in the set.  We may call this set the group of transfer-
ences of systems with stigmatic elements.  (The theory 
of groups is treated in several good texts5-7.  Groups 
are the generic as it were of which transferences are 
a specific.  It is important, the author believes, to rec-
ognize such relationships because it sets what one is 
doing within a mathematical context and counteracts 
isolationist tendencies.  It helps to increase commu-
nication with other disciplines and the possibility of 
being able to draw on methods developed elsewhere.  
It also emphasizes that we are not developing new 
mathematics but merely applying it.)

The key to aperture referral is a quantity that is 
constant along a ray through a system.  There are in 
fact two invariants along a ray, a topic to which we 
now turn.

  4
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Invariants along a ray through a system

Figure 1 represents four dioptric systems S each 
with a transference T of the form of Equation 2.  In 
each case Z is the longitudinal axis; it defines the 
positive sense through the system.  It represents the 
general direction in which light travels through S.  No 
component of S is shown apart from the entrance and 
exit planes labelled T with or without a subscript.  In 
each case the index of refraction is αO = n0aO on the negative 
side of the entrance plane (to the left in Figure 1) and 
n1  on the positive side of the exit plane.  In (a) and (b) 
there is an object point O and in (c) and (d) an image 
point I.

  5

In Figure 1(a) the entrance plane is TO; it is also 
the transverse plane containing object point O whose 
transverse position relative to Z is defined by the posi-
tion vector yO.  Thus O lies on the entrance plane of 
system S.  Now consider a ray from O through S.  At 
incidence onto S it has inclination aO.  The ray inter-
sects the exit plane T in the point with position vector 
y and emerges with inclination a.

Using the transference of Equation 2 we write the 
two basic equations of linear optics across system S 
(Equations 1 and 2 of the previous paper1) and solve 
each for αO  where αO = n0aO  .  One obtains
αO = y− AyO − e( ) / B  			           (4)
and
αO = α−CyO − π( ) /D  			           (5)

where α = n1a . αO  and αO are the reduced inclina-
tions of the ray at incidence and emergence from S.

Now we imagine moving exit plane T to other 
longitudinal positions while keeping the ray and re-
fracting elements fixed. αO , the left-hand side of both 
Equations 4 and 5, remains fixed but all of the quanti-
ties on the right-hand sides of the two equations vary.  
Thus, although all the fundamental properties (A, B, 
C, D, e and π ) of S vary, as does the emergent state 
(y and αO) of the ray, they change in such a way that 

Figure 1  Longitudinal axis Z and entrance and exit planes (T 
with or without a subscript) of four dioptric systems S used in 
the text.  None of the elements of the systems is shown.  In (a) 
object point O has transverse position yO with respect to Z and is 
located on the entrance plane TO  of S.  A ray (not shown) from 
O emerges from S at a point with transverse position y on exit 
plane T.  In (b) a segment of a ray with inclination aO and from 
a distant object point O is incident onto the entrance plane T0 
of S.  In (c) a ray is incident onto S at transverse position y and 
emerges at image point I at position yI on exit plane TI .  In (d) a 
ray incident at y emerges at y0 with inclination aI on its way to a 
distant image point I.
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the right-hand sides of Equations 4 and 5 remain fixed 
(because they are each equal to the fixed reduced inci-
dent inclination αO ).  The right-hand sides, therefore, 
are invariants along the ray.

Equations 4 and 5 are Equations 3 and 4 of the pre-
vious paper1 but specialized for systems consisting of 
elements that are stigmatic.  What were equations in 
vectors and matrices are now equations in vectors and 
scalars.

Equation 4 defines how the transverse position y of 
the ray changes along the ray.  Thus y− AyO − e( ) / B  
is the positional invariant of the ray.  Similarly Equa-
tion 5 defines how the reduced inclination αO changes 

along the ray; α−CyO − π( ) / D   is the inclinational 
invariant of the ray.

For the situation represented by Figure 1(a) the po-
sitional invariant is listed in Table 1 and the inclina-
tional invariant in Table 2.

By a similar argument one can determine the two 
invariants for each of the other three situations rep-
resented in Figure 1.  They are also listed in Tables 1 
and 2.

Figure 1(b) represents a ray through system S from 

  6

a distant object point O.  The entrance plane of S is 
now not TO  but T0.  All the rays from O have the same 
reduced inclination αO .  Choosing one of the rays is 
now equivalent to choosing the transverse position y0 
of the ray at T0 .

In Figure 1(c) there is an image point I with trans-
verse position yI on the exit plane TI of system S while 
in (d) I is distant and rays to it all have reduced incli-
nationαOI.  For each of these cases the positional and 
inclinational invariants are listed in Tables 1 and 2 
respectively.

In what follows we make use only of the positional 
invariants.  Reference to inclinational invariants has 
been introduced largely for mathematical complete-
ness.  We note, however, that the right-hand sides of 
Equations 4 and 5 can be equated.  This gives a rela-
tionship between reduced inclinationαO and transverse 
position y of a ray at any longitudinal position which 
can be solved for one in terms of the other.  The same 
can be done for all the systems represented in Figure 
1.

We turn now to the relationship of the transverse 
position of a ray in one transverse plane to its trans-
verse position in another.

Table 1  Positional invariant along a ray through an object (O) or image (I) point and scalar magnification Xy, 1→2  and transverse 

translation dy, 1→2 of transverse position y from transverse plane T1  to transverse plane T2.

Table 2  Inclinational invariant along a ray through an object (O) or image (I) point and scalar magnification Xα, 1→2  and transverse 

displacement dα, 1→2  of reduced inclination α  from transverse plane T1  to transverse plane T2 .
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Positional transformation from one transverse 
plane to another

Consider Figure 1(a) again.  Let us re-label trans-
verse plane T as T1.  The system from TO to T1 is 
now system S1. System S1 has transference T1 , scalar 
fundamental properties  A1, B1, C1 and D1 and 2×1  
fundamental properties e1 and π 1.  Adding subscript 
1 to all the variables on the right-hand side of Equa-
tion 4 we obtain the positional invariant at transverse 
plane T1.

We can also choose a second transverse plane T2 in 
Figure 1(a) in which everything in the previous para-
graph holds if we replace subscript 1 by 2.  The posi-
tional invariants at  T1 and T2 can be equated because 
they are both equal to the incident reduced inclination
αO :
y1 − A1yO − e1( ) / B1 = y2 − A2yO − e2( ) / B2 .             (6)

Solving for the emergent position we obtain

y2 =
B2
B1
y1 + A2 −

B2
B1
A1

⎛

⎝
⎜

⎞

⎠
⎟yO + e2 −

B2
B1
e1

 	         
(7)

which we can write
y2 = Xy, 1→2y1 +dy, 1→2  				           (8)
where
Xy, 1→2 = B2 / B1  				            (9)
and
dy, 1→2 = A2 − Xy, 1→2A1( )yO + e2 − Xy, 1→2e1 .	        (10)

Equations 8 to 10 are Equations 11 to 13 of the previous 
paper1 with astigmatism ignored.  The important differ-

ence is that Xy, 1→2  has been replaced by Xy, 1→2 . The 
linear component8 of the affine magnification9 associ-
ated with the referral now reduces to the much more 
familiar scalar magnification.

Equation 8 tells us that, from transverse plane T1 to 
transverse plane T2, the transverse position y1 of a ray 
gets multiplied by the scalar Xy, 1→2  and has a fixed 
vector dy, 1→2  added to it.  In other words if we follow 
a ray from one transverse plane to another we find 
that its transverse position relative to the longitudinal 
axis Z undergoes magnification by the factor Xy, 1→2
followed by transverse shift dy, 1→2 .  We call Xy, 1→2  
the positional magnification and dy, 1→2  the common 

transverse translation from T1 to T2 although we shall 
often use abbreviated terminology.  The positional 
magnification (Equation 9) and the common trans-
verse translation (Equation 10) are listed in Table 1 
for the case of object O on the entrance plane.

Just as there is transformation of position there is 
also transformation of reduced inclination of a ray 
from one transverse position to another which we 
now consider briefly in passing.

Inclinational transformation from one transverse 
plane to another

Starting with Equation 5 instead of Equation 4 and 
applying a similar argument one finds that the reduced 
inclination changes from transverse plane T1 to trans-
verse plane T2 in a similar manner.  It turns out that
α2 = Xα, 1→2α1 +dα, 1→2 .			           (11)

αO1 is magnified by scalar Xα, 1→2  and has a fixed vec-

tor dα, 1→2  added to it.  Expressions for inclinational 

magnification Xα, 1→2  and fixed shift dα, 1→2  for O on 
the entrance plane are listed in Table 2.

So far we have examined only the case represented 
by Figure 1(a), namely for referral by an object point 
O on the entrance plane.  The other three situations 
represented by Figure 1 are handled in a similar fash-
ion.  Equations 8 and 11 are obtained again for all 

three cases but with expressions for Xy, 1→2  and dy, 1→2  

as given in Table 1 and with expressions for Xα, 1→2  

and dα, 1→2  as given in Table 2.
Apertures may be of any shape.  We turn now to 

apertures that are elliptical (including circular) in par-
ticular.

Elliptical apertures

Figure 2 shows an ellipse E in a transverse plane T.  
a and b are half the major and minor diameters of E 
and va and vb are unit vectors along those diameters.  
For the present we assume a > b > 0 .  The centre of E 
has position vector y0  in T relative to the longitudinal 
axis Z.  A point is shown on E with position vector 
y relative to Z and position vector r relative to the 
centre.  Then

 								      

  7
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r = y− y0                                                                (12)
is a radial vector of the ellipse.  Ellipse E has equation
rTMr =1                                                                 (13)
where M is positive definite, that is, both its eigenval-
ues are greater than zero.  (This is the same as Equa-
tion 19 of the previous paper1.)  M represents the 
shape, size and orientation of E; we refer to it simply 
as the geometry of E. M1/2  is the principal square root 
of M and
Rp =M

−1/2

					           
(14)

the positive definite generalized radius of E.  Equa-
tion 13 can be written
Rp

−1r( )
T
Rp

−1r =1 .				          (15)

Rp can be obtained from the spectral theorem10 of lin-
ear algebra:
Rp = avav a

T + bvbv b

T .				           (16)

An example is treated in the Appendix of the previous 
paper1.

Figure 2  An ellipse E in a transverse plane T.  a is half the ma-
jor diameter and b half the minor diameter.  va  and vb are unit 
vectors along the major and minor diameters respectively.  Z is 
the longitudinal axis and is orthogonal to the plane of the paper.  
Relative to Z the centre of the ellipse has position vector y0 .  y 
is the position vector of a point on the ellipse. r = y− y0  is the 
position vector of the point relative to the centre of the ellipse; it 
is a radial vector of the ellipse.

Suppose in transverse plane T there is a thin opaque 
plate with an elliptical aperture A with centre y0 and 
positive definite generalized radius Rp .  We define A 
to be all the points in T for which
rTMr ≤1 .					            (17)
Equality implies points on the margin.

An aperture may be referred to another transverse 
plane by an object or image point.  The question is: 
What is the geometry and location of the referred ap-

erture?

Aperture referral

Consider now an elliptical aperture A1 in trans-
verse plane T1.  Its centre is at y1

0 , its geometry is   
M1 and its positive definite generalized radius is Rp1.  
A radial vector r1 has equation
r1
TM1r1 =1 		                                             (18)

or

Rp1
−1r1( )

T
Rp1

−1r1 =1 .				           (19)

Suppose aperture A1 is referred to another trans-
verse plane T2 by an object or image point to become 
referred aperture A2.  Every position vector y1 in A1 
undergoes affine magnification to y2 in A2 according 
to Equation 8.  In particular y1

0  becomes
y2
0 = Xy, 1→2y1

0 +dy,1→2 .				          (20)
Applying Equations 8 and 20 to Equation 12 we see 
that radial vector r1 of  A1 undergoes scalar magnifi-
cation according to
r2 = Xy, 1→2r1 .					               (21)
Solving for r1 and substituting into Equation 18 we 
obtain

r2
TM2r2 =1 					             (22)

where

M2 =
M1

Xy, 1→2
2

.					            (23)

Equation 22 shows that referred aperture A2 is also 
elliptical; its centre is at y2

0  given by Equation 20 and 
its geometry is given by Equation 23.  In fact Equa-
tion 21 shows that referral magnifies aperture A1 by 
the scalar Xy, 1→2 ; thus referral changes the size but 
not the shape or orientation of the ellipse.

Substituting for r1 in Equation 19 we find that
R2

−1r2( )
T
R2

−1r2 =1                                                      
(24)

where
R2 = Xy, 1→2Rp1  				             (25)

is a generalized radius of A2. The positive definite 
generalized radius is

Rp2 = Xy, 1→2
2 Rp1 .				           (26)

  8
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Circles are simpler to handle than ellipses and the 
pupil of the eye and most other apertures of relevance 
in optometry are close to circular.  Accordingly we 
now examine that special case.

Circular apertures

If  a = b > 0  then ellipse E is a circle of radius a.  
We represent the radius by rp, that is, rp= a.  Subscript 
p (for positive) distinguishes this as the radius of a 
circle as conventionally defined.  We refer to it as the 
positive radius of the circle in contrast to other radii 
(without subscript p) which may be positive or nega-
tive.  Ellipse E has geometry
M = I / rp

2

					            (27)
and positive definite generalized radius
Rp = Irp .					            (28)
Its equation simplifies to
rTr = rp

2 .					           (29)

A circular aperture A1 with positive radius rp1 and 
centre at y1

0  in transverse plane  T1 becomes referred 
aperture A2 in T2. A2 is circular with centre given by 
Equation 20 and radius
r2 = Xy, 1→2rp1  					           (30)
which is positive, zero or negative according as the 
magnification Xy, 1→2  is positive, zero or negative.  
The positive radius of  A2 is

 rp2 = Xy, 1→2
2 rp1 .				          (31)

The following simple example provides insight 
into the significance of negative magnification of an 
aperture in particular.

Example

Figure 3 represents an example of referral of a cir-
cular aperture.  The longitudinal axis Z is the optical 
axis of the system.  Circular aperture  A1 of positive 
radius rp1 is referred to transverse plane T2 by an ob-
ject point O on Z. A2 is the referred aperture. T2 is a 
distance z downstream from  A1 and the intervening 
medium has index n.  The transference of system S1 
from object plane TO to the plane of A1 can be written

T1 =
IA1 IB1
IC1 ID1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

				             
(32)

  9

where we have deleted the fifth row and column 
(which we can do because both e and π  are null).  
The transference of system  S2 from TO  to T2 is

T2 =
I A1 +ζC1( ) I B1 +ζD1( )
IC1 ID1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 		          

(33)

a result obtained in the usual way.  Here  ζ = z / n .

Figure 3  Object point O on longitudinal axis Z refers circular 
aperture A1 of radius rp1 = r1 > 0  in transverse plane T1 to trans-
verse plane T2 at distance z downstream in a homogeneous me-
dium.  Referred aperture A2 is circular with radius r2.  As z in-
creases r2 decreases reaching 0 for z = zf  and then goes negative.  
For  z = 2zf (as in the figure) r2 = _r1 .  The positive radius of  A2 

is rp2 = r2
2 .

From Equation 9 we obtain the scalar magnifica-
tion
Xy, 1→2 =1+ζD1 / B1 .				            (34)
Also, from Equation 10,
dy, 1→2 = o 					             (35)

because yO = e2 = e1 = o.  As z increases from zero re-
ferred aperture A2 initially decreases in size in Figure 
3; this implies that system S1 has D1 and B1 of op-
posite signs.  From Equations 30 and 34 we see that 
referred aperture A2 has radius
r2 = 1+ζD1 / B1( )rp1 .				            (36)

Solving we find that r2 reduces to zero when ζ = ζf  
where
ζ f = −B1 /D1 .					            (37)
Equation 36 can then be written
r2 = 1−ζ / ζ f( )rp1 .				             (38)

It is clear that r2 is positive, zero or negative accord-
ing as ζ  is less than, equal to or greater than ζf .   A2 
has positive radius

rp2 = 1−ζ / ζ f( )2 rp1 .			              	        (39)

Note that r2 decreases linearly with z; the function 

r r
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is smooth.  On the other hand rp2 decreases linearly 
until z = zf where the derivative is not defined after 
which it increases linearly.

Figure 3 is drawn for ζ = 2ζ f .  In that case the mag-
nification is Xy, 1→2 = −1  (from Equations 34 and 37) 
and r2 = −rp1 (from Equation 38) and  rp1= rp2 (from 
Equation 39).  Figure 4 shows the view along longi-
tudinal axis Z.  Points P1, Q1 and R1 on the margin of 
A1 become points P2, Q2 and R2 , respectively, on the 
margin of A2; referral preserves the anticlockwise order 
of the points.  In effect referral causes rotation through 
180° .  However if points are ignored referred aper-
ture A2 is identical to aperture A1.

Figure 4  View along longitudinal axis Z of aperture A1 and 
referred aperture A2 in Figure 3.  A1 is circular with positive ra-
dius rp1.  The scalar magnification associated with the referral 
is Xy, 1→2 = −1  and, hence, A2 has (negative) radius r2 = −rp1  and 
positive radius rp2 = rp1 .  Points  P1, Q1 and R1 in anticlockwise 
order on the margin of A1 become points  P2,  Q2 and R2, respec-
tively, also in anticlockwise order on the margin of A2.  In effect 
referral causes rotation through 180° .

Concluding remarks

We have here specialized the results of an earlier 
paper1 by ignoring astigmatism.  Referral from trans-
verse plane T1 to transverse plane T2 results in dis-
placement of a point with position vector y1 in T1 to 
a point with position vector y2 given by Equation 8.  
The transformation is a special case of affine mag-
nification9; there is scalar magnification by Xy, 1→2  
followed by transverse translation dy, 1→2  expressions 
for which are given for the four situations in Table 
1.  Thus eliminating astigmatism simplifies the lin-
ear magnification8 Xy, 1→2   of the general case1 to the 
conceptually much simpler and more familiar sca-
lar magnification Xy, 1→2 .  2×2  matrices have been 
eliminated in Equation 8 and in Table 1 (and Table 

2); only scalars and vectors remain.  The mathemat-
ics becomes more accessible for persons less familiar 
with matrix algebra.

Scalar magnification Xy, 1→2  may be positive, 
zero or negative.  If it is positive referral magnifies 
the aperture in the familiar sense; there is change in 
size but not in shape or orientation.  If Xy, 1→2  is zero 
the referred aperture is a point.  If Xy, 1→2  is negative 
there is inversion through its centre and magnification 

by −Xy, 1→2 .  Inversion effectively rotates the shape 
through 180°  about Z.8  If such rotation represents 
a symmetry of the aperture then referral does not 
change the shape or orientation.  Figure 4 illustrates 
the case of Xy, 1→2 = −1  and a circular aperture; the 
aperture and the referred aperture are identical.  The 
same would be true of an elliptical aperture and an 
aperture of any other shape with Z an axis of two-fold 
rotational symmetry.  However the same is not true 
of apertures of other shapes as illustrated in Figure 
5; triangular aperture P1Q1R1  in transverse plane T1 
undergoes referral and magnification Xy, 1→2 = −1  to 
become referred aperture P2Q2R2 in transverse plane 
T2.  In contrast to the case in Figure 4 the referred 
aperture is distinguishable from the aperture.  Note 
that the effect is to turn the shape through 180° .  To 
say that the shape is turned upside down would be 
misleading.

Figure 5  Triangular aperture P1Q1R1 in transverse plane T1 of 
Figure 3 and referred aperture P2Q2R2.  The positional magnifi-
cation is Xy, 1→2 = −1 .  Referral rotates the shape through 180° .  
In contrast to the circular aperture in Figure 4 the referred aper-
ture is distinguishable from the aperture.  To describe the change 
as turning the shape upside down is not correct for that would 
require  R2 and P2 to be interchanged.

Consider an eye with stigmatic elements.  The reti-
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nal blur patch for a distant object point is the pupil 
referred to the retina by the object point.  Associated 
with the referral is scalar magnification that is posi-
tive, zero or negative according as the eye is myopic, 
emmetropic or hyperopic.
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