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Introduction

Matrix methods have played significant roles 
in modern ophthalmic optics.1-23  In particular the 
dioptric power matrix was introduced into optometry 
by Long20 in 1976 and the system matrix or ray 
transference by Keating22, 23 in 1981.  As pointed out 
by Blendowske24, however, much of the material 
had actually been published before by Fick in the 
early 1970s in a series of 22 short articles; one in 
particular describes the dioptric power matrix25.  

Because he ‘published in German and additionally 
in a journal more related to the craftsman than to a 
scientific readership [Fick’s] approach was nearly 
forgotten’.24  Indeed there is earlier material still 
which unfortunately seems to have has suffered 
the same fate, also, apparently, for not having been 
published in English: an appendix entitled ‘Le Calcul 
des Matrices en Optique’ (pages 322-328) to the book 
Optique Physiologique: Tome Premier: la Dioptrique 
de l’Œil et Sa Correction published by Le Grand26 in 
1945.  The 3rd edition of the book27 (dated 1964), with 
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minor changes to the appendix, appeared in English 
translation28 in 1980 as the well-known Physiological 
Optics by Le Grand and El Hage29.  Sadly, however, 
the appendix was omitted from the English version.

Le Grand’s appendix is interesting in its own 
right.  However it is not easy to come by, is terse, is in 
French, gives few explanations and uses symbolism 
that differs from that in current use.  For these 
reasons it seems appropriate to make it available in 
English translation for the modern vision scientist.  
Our purpose here, then, is to do so and to provide 
a critical analysis of the appendix set in the context 
of matrix methods in current use in optometry and 
vision science.

We begin with the basics of Gaussian and linear 
optics expressed in the matrix symbolism in recent 
usage.  With that as reference we then examine Le 
Grand’s appendix.  His appendix is given in English 
translation in the appendix to this paper together with 
detailed annotations.

Elements of matrix methods in Gaussian and 
linear optics

Gaussian and linear optics are both first-order 
optical models.  The first is effectively a two-
dimensional optics (Figure 1).  Rays can be visualized 
in a single plane, the plane containing the optical 
axis and the object and image points; usually it is 
a representative plane in systems invariant under 
rotation about the optical axis.  The second model is 
a three-dimensional generalization.  Only the latter 
is adequately capable of handling astigmatism, a 
fundamentally three-dimensional phenomenon.  For 
an excellent account of both models of optics, and 
their relationship to geometrical and other models, 
the reader is referred elsewhere30.  We summarize 
here basic results which we shall need in our analysis 
of Le Grand’s appendix below.

The transference
The matrix of interest goes by several names including 

system matrix22, 23, 31-33, matrix of the system34, 35, lens 
matrix36, ABCD matrix37, optical matrix37, ray-transfer 
matrix37, 38 and (ray) transference15-18.  We shall refer to 
it here as the transference and represent it by the symbol 
S.  It is a complete representation of the first-order optical 
character of a system.37

In Gaussian optics the transference is a real 22×  
matrix which we write as30, 38









=

DC
BA

S                                                             (1)

where A, B, C and D are what we call the four 
fundamental (first-order optical) properties of 
Gaussian system S.39-41  A is the dilation, B the 
disjugacy, C the divergence and D the divarication.  
The four fundamental properties are not independent 
but are related by the equation
AD – CB = 1.                                                           (2)
In other words the transference has a unit 
determinant30, 38.  We say that the 22×  transference 
has three degrees of freedom.  If we know three of the 
fundamental properties we can usually calculate the 
remaining one.  We cannot always do so, however; 
for example we cannot calculate D if we know A, B 
and C and A happens to be 0.

In linear optics the transference expands to become 
a 44×  real matrix which is usually written9, 37
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in terms of four 22×  submatrices A, B, C and D, 
the four fundamental properties of the linear system.  
Other properties can be obtained from the fundamental 
properties; they are derived properties.  For example 
the dioptric power of a system is defined by39

CF −= .            (4)
The 44×  transference has 10 degrees of freedom, 
the 16 entries being related by six scalar equations 
instead of just one (Equation 2).  The six equations are 
contained within the single matrix equation30, 37, 42-48

STES = E             (5)

where TS  represents the matrix transpose of S,









−

=
OI
IO

E               (6)

and O and I are 22×  null and identity matrices 
respectively.  Substitution from Equations 3 and 6 
into Equation 5 leads to three matrix equations,43, 48, 49

ACCA TT = ,             (7)

BDDB TT = ,              (8)
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IBCDA =− TT .              (9)

If we multiply these equations out in terms of their 
entries we find that Equations 7 and 8 are each 
equivalent to a single scalar equation and Equation 9 
is equivalent to four scalar equations.

The 22×  transference (Equation 1) also obeys 
Equation 5 if O and I are interpreted as 11×  null and 
identity matrices, that is, simply as the scalars 0 and 
1.  It also obeys Equations 7 and 8 but trivially and 
Equations 2 and 9 are identical.

Any nn 22 ×  matrix S which obeys Equation 5, 
where O and I are nn× , is said to be symplectic42-46.  
In particular both 22×  and 44×  transferences are 
symplectic.  Many results for transferences arising as 
a consequence of their symplecticity are summarized 
elsewhere47; some will be used below.

Like Le Grand26, 27 we shall be concerned here with 
optical systems all of whose component refracting 
elements are centred on a common axis, the optical 
axis.  For systems with decentred elements one can 
make use of uncentered49 or augmented symplectic 
matrices50-53 which have an extra row and an extra 
column.

A ray traversing a system
Figure 1 represents a ray traversing a Gaussian 

system S.  S lies between entrance and exit planes 0T  
and T.  The elements of S (none of which is shown) 
are centred on optical axis Z.  Upstream of S the 
medium has index of refraction 0n ; downstream from 
S the index is n.  Transverse positions and inclinations 
are measured relative to Z.  At incidence the ray has 
state30, 37









=

0

0
0 α

y
ρ ,           (10)

a 22×  matrix, where 0y  is the transverse position,

000 an=α            (11)

and 0a  is the inclination.  We call 0α  the reduced 
inclination of the ray at incidence.  At emergence the 
ray has state ρ  defined similarly.  The transference 
S of S is an operator that changes 0ρ  across S to ρ  
according to30, 37

ρρ =0S ,           (12)

which is equivalent to the pair of scalar equations

Ay yBAy =+ 00 α             (13)
Cy αα =+ 00 DCy .           (14)
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Figure 1  An arbitrary Gaussian optical system S lies between 
entrance plane 0T  and exit plane T.  None of its refracting 
elements is shown.  All elements are centred on the optical axis 
Z.  A ray enters S with transverse position 0y  and inclination 

0a  and emerges with transverse position y and inclination a.  
The ray is confined to the plane of the paper; Z lies in the same 
plane.  The media before and after the system have indices of 
refraction 0n  and n.  

We now generalize these equations for linear 
optics; surfaces need not be invariant under rotation 
about the optical axis, that is, they may be astigmatic.  
Transverse position 0y  becomes a vector30, 37
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20

10
0 y

y
y             (15)

with Cartesian coordinates y10 and y20 which we 
usually take as horizontal and vertical components 
respectively, and similarly for y, 0a , a, 0α  and α .  

0y  and y  are the transverse positions, 0a  and a the 
inclinations and 0α  and α  the reduced inclinations of 
the ray at incidence and emergence.  The components 
of 0a  and a are also called direction cosines37 and 
the components of 0α  and α  are also known as 
optical direction cosines37.  The incident state of the 
ray (Equation 10) generalizes to the 14×  partitioned 
matrix









=

0

0
0 α

ρ
y             (16)

and similarly for the emergent state ρ .  Equation 12 
retains the same form.  Scalar Equations 13 and 14 
become the matrix equations
Ay yBAy =+ 00 α              (17)

Cy αα =+ 00 DCy .           (18)
Linear optics includes Gaussian optics as a special 

case.  In the absence of astigmatism the fundamental 
properties become scalar matrices; we can write

10

20
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IA A=             (19)
for example.

Systems in series
Consider two optical systems 1S  and 2S  with 

transferences 1S  and 2S  respectively.  Suppose they 
are juxtaposed to form a compound system.  Light 
traverses 1S  first and then 2S .  It follows from Equation 
12 that the compound system has transference30, 37

12SSS = .           (20)
In general the transference of a compound system is 
the product of the transferences of component systems 
in reverse order.

Two elementary systems are a homogenous gap 
and a single refracting surface.  In Gaussian optics 
their transferences are30, 37
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and
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C
S              (22)

respectively.  nz /=ζ  is the reduced width of the 
gap, z the actual width and n the index of refraction.  

FC −=  is the divergence and F the dioptric power of 
the surface.

Object and image
Suppose an object point O maps to an image point 

I through a Gaussian system S (Figure 2).  Relative 
to entrance plane 0T  the longitudinal position of O 
is Oz .  Consider the compound system DS  from the 
object plane OT  to the image plane IT .  It consists of 
a homogeneous gap of width Oz−  (the minus sign 
because Oz  is negative), system S (with transference 
S) and a homogeneous gap of width Iz .  It follows 
from Equation 20 that the compound system has 
transference
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where 0OO / nz=ζ  and nz /II =ζ .  Multiplying out 
we obtain

( )








−

+−++
=

O

OIII
D ζ

ζζζζ
CDC

CADBCA
S .         (24)

 

O  
I  

n  

Oy  

0n  

0T  T  

Z  
S  

Iy  

OT  IT  

Oz−  Iz  

Figure 2  An object point O forms an image point I through a 
Gaussian system S.

We now apply Equation 13 but across compound 
system DS .  Because every ray from O arrives at the 
same point I it follows that the disjugacy DB  of DS  
must be zero.  DS  is a conjugate system.  Hence, from 
Equation 24,

( ) 0OII =+−+ ζζζ CADB               (25)

from which it follows that

DC
BA
+−
−

=
O

O
I ζ

ζζ .             (26)

Astigmatism
In linear optics the transferences of the 

homogeneous gap and refracting surface are30, 37
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            (27)

and









=
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S              (28)

respectively.  Here FC −=  where F is the (symmetric) 
dioptric power matrix of the possibly-astigmatic 
surface.  Using the notation introduced elsewhere54 
we can write the power of the surface in principal 
meridional form as { } { }°+ 9021 θθ FF .  (We read 
this as ‘ 1F  along θ  and 2F  along °+ 90θ ’.)  We 
sometimes abbreviate this to { } 21 FF θ .  The dioptric 
power matrix is given by









=

2221

1211

ff
ff

F             (29)

where25

θθ 2
2

2
111 sincos FFf +=            (30)

( ) θθ cossin212112 FFff −==               

90
90

11

11 12

12

11

12 21 (31)
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θθ 2
2

2
122 cossin FFf += .             (32)

Equivalent equations are given by others20. As 
for Gaussian optics the transferences of systems 
compounded of gaps and surfaces can be obtained by 
multiplying elementary transferences (Equations 27 
and 28) in reverse order.

Thick spectacle lens
A thick possibly-bitoric spectacle lens in front of 

the eye constitutes an instrument CS  of four elements: 
in order they are a refracting surface of power 1F , a 
homogeneous gap (the body of the lens) of reduced 
width 2ζ , a second refracting surface of power 3F  
and a second homogeneous gap (between spectacle 
lens and eye) of reduced width 4ζ .  The transference 
is
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that is,
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Condition for sharp retinal images
Consider an emmetropic eye in linear optics.  Its 

transference S is given by Equation 3.  Rays from 
a distant object point O enter the eye with different 
transverse positions y0 and yet arrive at the same 
point (transverse position y) on the retina it follows 
from Equation 17 that

OA = .            (35)
Suppose a spectacle lens or other device compensates 
for the refractive error of an ametropic eye.  Then the 
compound system of device and eye satisfies Equation 
35.  Equation 35 is the necessary and sufficient 
condition for sharp retinal images.  Furthermore 
Equation 9 results in

T−−= CB                                                               (36)
and, hence, Equation 17 becomes

yC =− −
0

Tα .            (37)

A system for which Equation 35 holds we call exit-
plane focal.

Condition for sharp undistorted images

Equation 37 is a linear mapping from 0α  to y.  It 
shows that, although the retinal image is sharp, it may 
be distorted.  In general a distant circle maps to an 
ellipse on the retina.  It maps to a circle if and only 

if T−C  is a scalar multiple of R where R is either a 
rotation matrix








 −
=

θθ
θθ

θ cossin
sincos

R            (38)

or a reflection matrix









−

=
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θθ

θ 2sin2cos
2cos2sin

R .             (39)

Because T−R  is itself a rotation or reflection matrix 
we can say that the object circle maps to an image 
circle on the retina if and only if C or F is a scalar 
multiple of R, that is 

RC m=             (40)
for a scalar m.  Thus, in addition to Equation 35, there 
are two conditions for sharp undistorted images on the 
retina: either (a) the diagonal elements of C are equal 
and the off-diagonal elements are equal in magnitude 
but opposite in sign (based on Equation 38) or (b) 
the off-diagonal elements are equal and the diagonal 
elements are equal in magnitude but opposite in sign 
(Equation 39).

Suppose there is an observer beyond the plane 
of the distant circle who traces the object circle in 
a clockwise sense.  The image circle on the retina 
would be traced in the same sense if condition (a) 
were satisfied and in the opposite sense if condition 
(b) were satisfied.  We express this by saying that 
condition (a) preserves chirality and condition (b) 
reverses chirality.

For the naked eye the divergence C (or power F) 
is usually not very different from a scalar matrix.  It is 
quite possible for an eye to satisfy condition (a) but it 
seems inconceivable for an eye to satisfy condition (b).  
For eyes, then, it seems safe to disregard condition (b) 
and conclude that condition (a) is the only condition 
in practice for sharp undistorted retinal images.  One 
expects the same to be true of the eye compensated by 

21
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.
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a contact or spectacle lens.  (In Footnote [82] a thick 
lens is described which satisfies condition (b) but is 
totally unrealistic.)  However it is quite possible for 
condition (b) to be satisfied by the compound system 
of eye and more complicated optical instrument.

Condition for sharp, undistorted and unrotated 
images

An eye satisfying Equation 35 and condition (a) is 
emmetropic and retinal images of distant objects are 
undistorted.  However they are rotated through angle 
θ . For the image to be sharp, undistorted and unrotated 
it must be that 0=θ  in which case IR =θ ; in other 
words C and F must be scalar matrices.  Usually they 
are close to scalar matrices and, so, rotations are likely 
to be small.

Inverse transference
Because of its symplecticity the transference is 

always invertible, the inverse being43,  47
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From Equation 20 we have
1

2
1

1
1 −−− = SSS

             (42)

which shows that for a compound system the order of 
multiplication of inverse transferences is the same as 
order of component systems. 

As an operator the inverse transference gives the 
incident state of a ray in terms of its emergent state:

0
1 ρρ =−S .                      (43)

Condition for compensation of refractive error by 
means of a thin lens

Consider the compound system of eye and thin 
lens in front of it.  If the eye has transference given 
by Equation 3 and the lens has divergence 1C  (a 
symmetric matrix) and is located at reduced distance 

1ς  in front of the eye then the compound system has 
transference
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The compound system is exit-plane focal if Equation 
35 is satisfied, that is, 

( ) OCBAA =++ 11ς  
            (45)

or

( ) 11
11

−−+−= BAIC ς .             (46)

Because of symplecticity, BA 1−  is symmetric47 
and, hence, 1C  is symmetric.  Choosing the vertex 
distance fixes 1ς  and hence the divergence 1C  of the 
compensating thin lens.

For the special case in which 01 =ς  Equation 
46 gives ABC 1

1
−−= .  Hence the corneal-plane 

refractive compensation is40

ABF 1
0

−= .            (47)

Condition for undistorted compensation
Suppose an optical device with transference CS  is 

placed in front of the eye.  The compound system has 
transference









++
++

=
















CCCC

CCCC

CC

CC

DDCBDCCA
BDABBCAA

DC
BA

DC
BA

 
   

This system must satisfy both Equation 35 and 
Equation 40, that is,

OBCAA =+ CC
               (49)

and
RDCCA m=+ CC .              (50)

Making use of Equation 47 we can write Equation 49 
as

OCAF =+ CC0 .              (51)

From Equation 49 we obtain

C
1

C AABC −−= .            (52)

Hence Equation 50 becomes

( ) RAADBC m=− −
C

1 .              (53)

We recognize the coefficient of CA  as the Schur 
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complement47, 55, 56 of C in the symplectic matrix S.  
Hence47, 57 Equation 53 simplifies to

RAB m=− −
C

T            (54)

and so

RBA T
C m−= .           (55)

We substitute into Equation 49 and use the fact that 
TBA  is symmetric to obtain

RAC T
C m= .             (56)

Le Grand’s appendix

The brief summary above of the matrix approach 
to Gaussian and linear optics provides a coherent 
framework against which we can now examine 
Le Grand’s appendix.  A translation is given in the 
appendix of this paper.  It is a translation of the 
appendix in the first edition of Le Grand’s book26.  
A few minor changes made in the third edition27 are 
noted.  Superscript numbers, as in n• , in the translation 
continue to refer to references listed under References 
at the end of the paper; superscript numbers in square 
brackets, as in [ ]n• , refer to detailed annotations listed 
as footnotes in the translation.  Le Grand’s original 
equation numbering has been preserved including 
the fact that his equation numbers appear to the left 
of equations; the numbers were changed in the third 
edition.

We turn now to the more important questions 
concerning Le Grand’s appendix.  Many minor matters, 
including a small number obvious typographical 
errors, will be left to the footnotes.

Le Grand on the transference

The first reference Le Grand makes to what 
appears to be a transference is his unnumbered 
equation after superscript [26].  Comparison of the 
matrix on right-hand side with Equation 1 suggests 
that the matrix is a transference in Gaussian optics.  
This is reinforced by Le Grand’s Equation (108) in 
the light of the symplectic requirement, Equation 2.  
More particularly, comparison of the left-hand matrix 
with Equation 22 suggests that it is the transference 
of a refracting surface.  However the signs of the 

bottom-left entries differ.
At first sight the second matrix at superscript [30] 

appears to be the transference of a homogeneous gap 
of reduced thickness δ−  (compare Equation 21) and 
the equation appears to represent the transference of a 
compound system consisting of the homogeneous gap 
followed by a system 1S  obtained by multiplication 
in reverse order according to Equation 20.  Similar 
remarks apply to the equations at [32] and [34].

In actual fact the negative sign gives Le Grand’s 
matrix away, not as the transference S of a gap of 
reduced thickness δ−  but the inverse transference 

1−S  of a gap of thickness δ− .  Similarly Le Grand’s 
matrix for the refracting surface is actually the inverse 
transference of the surface.

While transferences multiply in reverse order 
of component elements (Equation 20) inverse 
transferences multiply in the same order as the 
component elements (Equation 42).  This accounts 
for the order of multiplication in Equation (110) 
at superscript [34], in the numerical example that 
follows it and elsewhere in the appendix.

In the presence of astigmatism Le Grand writes 
the 44×  matrix M (at [63]) with the six equations 
among the entries (at [67]).  That it is also an inverse 
transference rather than a transference is clear 
from the matrix for a gap (at [70]) and the order of 
multiplication at [71].  It is also clear at [69] where 
the bottom-left block of the matrix for an astigmatic 
refracting surface consists of powers and not their 
negatives.  The inverse of a symplectic matrix is also 
symplectic43 which is why there should be the six 
equations Le Grand refers to as mentioned above (just 
after Equation 4) for a transference.

The inverse transference is an operator that 
operates on the emergent state of a ray to give the 
incident state for that ray for a given optical system 
(Equation 43).  However nowhere in his appendix 
does Le Grand hint at such an interpretation.  One 
gets the impression that he sees the matrix merely as 
a convenient mathematical device for determining 
optical properties of compound systems.  The matrix 
is that of course, but its nature as an operator which 
represents the way the system operates on light seems 
to be an important feature of the inverse transference, 
as of the transference itself, which does not come 
across here.

Instead of thinking of the transference as the 
property of a particular system that operates on a ray 
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traversing it Le Grand’s thinking is in terms of object 
and image.  This is clear from his frequent reference 
to origins (see just before [25] and [27] for example).  
Origins relative to which objects and images are 
located need to be defined.  There is less emphasis on 
the need to define optical systems.  An optical system 
followed by a homogeneous gap is treated between 
[27] and [30] but it is not treated as a new compound 
system; it is treated as the same system but with the 
origin for images shifted downstream by the width of 
the gap.  Of course the two approaches are equivalent 
but Le Grand’s seems less clear.

An advantage of Le Grand’s approach is the 
simpler equations one can obtain if one chooses 
the origins to be at the principal planes.  He takes 
advantage of this fact at [17] and in the solution to 
Exercise 43.  However this is true only for Gaussian 
optics; because principal planes are not usually well 
defined in the presence of astigmatism58 the approach 
does not generalize to linear optics.

Le Grand on the dioptric power matrix

The bottom-left block of an inverse transference is 
TC−  (Equation 41) or, in other words, TF  (Equation 

4).  Because of symmetry (Equation 29 and 31) 
the bottom-left block is simply F in the case of an 
astigmatic refracting surface.  Thus the bottom-left 
block at [69] is the dioptric power matrix of the 
surface.  Expressions for the entries in the block are 
given at [53].  While the expressions for C and B 
match those for the diagonal entries of F (Equations 
30 and 32) Le Grand’s expression for A is double that 
of the off-diagonal entries (Equation 31).  Thus if the 
factor 2

1  is inserted then Le Grand’s equations give 
the entries of the dioptric power matrix.  Le Grand’s 
omission of the factor must surely be a typographical 
slip.  (In the numerical example dealt with near the 
end of Le Grand’s appendix 0=A , so the omission 
has no effect on the numerical results in this particular 
case.)

Just as for the transference Le Grand does not 
seem to think of the dioptric power matrix as an 
integral whole.  He does not use a symbol for it.  He 
talks instead of the three powers of a surface (at [53]) 
which become four powers of a system in general (at 
[64]).  The powers are separate entities.  There is no 
suggestion of a unified function.

Le Grand on other matters

At [72] Le Grand presents the condition that an eye 
or compensated eye will form sharp retinal images 
of distant objects.  The condition consists of four 
equations.  An explanation is not given and is certainly 
not obvious.  Le Grand’s conditions are derived in 
Footnote [72]; they are a direct consequence of the 
condition (Equation 35) given above.

In the presence of astigmatism the sharp retinal 
image is usually distorted.  At [75] Le Grand 
presents a supplementary condition, also without 
explanation, which needs to be satisfied if the image 
is undistorted.  His condition takes the form of a 
single scalar equation.  The required conditions are 
derived in Footnote [75]; they take the form of three 
scalar equations in addition to Le Grand’s single 
equation.  The basis of the derivation being Equation 
40 and the two associated conditions (a) and (b).  
One obtains a pair of equations (Equations 49 and 
50) which can be reduced to Equations 55 and 56.  
There is much more to the problem than presented 
by Le Grand; strictly speaking his condition is 
neither necessary nor sufficient.  It is possible to have 
systems which produce sharp undistorted images of 
distant objects but which do not satisfy Le Grand’s 
condition.  However it seems unlikely for such cases 
to be encountered in conventional applications in 
optometry.  If these cases are neglected Le Grand’s 
condition becomes necessary.  Strictly speaking it is 
not a sufficient condition although one expects the 
additional requirement to be satisfied automatically 
by most eyes.

It is perhaps worth noting that the numerical 
example (at [83] to [85]) which Le Grand selects to 
illustrate the use of his equations at [82] can be solved 
simply by means of Gaussian optics applied once 
along each principal meridional plane.  That is because 
there are no obliquely-crossing principal meridians.  
However his equations are actually more powerful 
than he illustrates; they can handle obliquely-crossing 
meridians without any difficulty which is not possible 
with Gaussian optics.

Concluding remarks

Authors in optometry have not always been as 
careful as they might have been in attributing credit.  
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The recognition that the present author is no exception 
has motivated this study.  The attempt has been to 
make a scholarly analysis of exactly what Le Grand 
had to say in his appendix about matrices in optics 
and, more particularly, about the dioptric power 
matrix and the ray transference.  In order to obviate 
any possible ambiguity I have thought it appropriate 
to provide detailed and exhaustive annotations to the 
translation.

In view of what we have seen here, if asked 
whether Le Grand described the dioptric power 
matrix and the transference one would have to say 
‘No, not in the full sense in which those concepts 
are now understood’.  That, however, would be a 
misrepresentation for he certainly came very close.  
The missing 2

1  in his expression for the off-diagonal 
elements of the dioptric power matric of an astigmatic 
refracting surface is almost certainly a typographical 
error and is not the issue.  He seems to have thought 
of three separate powers rather than an integrated 
whole dioptric power.  Le Grand worked not with the 
transference but its inverse; nowhere in his appendix 
does he deal with the inverse of his matrix (which 
would have been the transference) and, importantly, 
he does not seem to have thought of his matrix as a 
whole entity in its own right and more particularly as 
an entity that operates on the state of a ray traversing 
the system.

When reading Le Grand it is important to note 
that he takes the optical system of the eye to be from 
just anterior to the cornea to just posterior to the lens.  
The vitreous is excluded.  (See Footnote [36].)  The 
eye as optical system to which we refer in this paper 
includes the vitreous.

The conditions for sharp retinal images of distant 
objects are derived in Footnote [72]; they are identical 
to the conditions that Le Grand presents without 
justification.  The conditions for sharp images that 
are also undistorted are derived in Footnote [75]; here 
Le Grand’s condition does not tell the whole story.  
Nevertheless it seems safe to say his condition tells 
most of the story at least in the context of conventional 
optometric applications.  A fuller analysis of sharp and 
undistorted retinal images, including for near objects, 
has recently appeared elsewhere59.

In looking carefully at Le Grand’s thinking, as we 

have tried to do here, we become more conscious 
still of those scholars before him who too have not 
always been given their due.  There are Herzberger’s 
important contributions60-62 of the 1930s, Smith’s63-68 
of the 1920s and many others all the way back to 
Gauss69 and, perhaps, before.  For, reading these 
older works, one is frequently surprised, by ideas one 
thought were new.  “The wind goeth toward the south, 
and turneth about unto the north; it whirleth about 
continually, and the wind returneth again according 
to his circuits. / … / The thing that hath been, it is that 
which shall be; and that which is done is that which 
shall be done: and there is no new thing under the sun. 
/ Is there anything whereof it may be said, See, this 
is new? It hath been already of old time, which was 
before us.” (Ecclesiates 1 9-10).
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Appendix

‘The arithmetic of matrices in optics’[1] by Yves Le 
Grand[2]

In preparing this volume I have strived to keep the 
mathematical development at a level as elementary as 
possible, and in terms of optical formulae most widely 
used in classical education.  However, the same 
problems can be solved with greater elegance and 
generality by employing certain algebraic symbols, 
matrices, the use of which is current in contemporary 
physics.  We will consider here only square matrices.

One calls a matrix of order n a table formed of n 
rows and n columns, consisting thus of 2n  quantities 
arranged as follows:[3]
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In the term apg of the matrix index p designates 
the number of the row and index q the number 
of the column.  For what follows the only 
property of matrices which we will need concerns 
multiplication: one defines the product of two 
matrices of order n as a third matrix also of order n



















=





































nnnnn

n

n

nnnnn

n

n

nnnnn

n

n

cccc

cccc
cccc

bbbb

bbbb
bbbb

aaaa

aaaa
aaaa

























321

2232221

1131211

321

2232221

1131211

321

2232221

1131211

=


















=





































nnnnn

n

n

nnnnn

n

n

nnnnn

n

n

cccc

cccc
cccc

bbbb

bbbb
bbbb

aaaa

aaaa
aaaa

























321

2232221

1131211

321

2232221

1131211

321

2232221

1131211

the terms of the matrix product obtained by the 2n  
relations[4]

∑
=

=
=

nk

k
kqpkpq bac

1
;

that is to say that any term c is obtained from the as 
of the same row and the bs of the same column as the 
sum of their pairwise products.

It is easy to see that the product of matrices is not 
commutative; one cannot reverse the factors.  For 
example
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while
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3423
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65 .

However this operation is associative: in the 
product of several matrices one can group them 
at will provided one does not change the order: 

( ) ( )321321 MMMMMM = .[5]

Gauss’s Coefficients. – Consider a centred[6] system 
on the axis of which we choose any two origins; 
the abscissas x and x′  of two conjugate points 

[1]. This is a translation by WFH from the original French of Annexe II: Le Calcul des Matrices en Optique, pp 322-328, and parts of pp 332 
& 341 of the 1st edn of the book26 that LG (Le Grand) originally wrote ‘in 1945 as a textbook for the students of the Institute of Optics in Paris’28.  
The 3rd edn of the book27 appeared in English translation29 in 1980.  Although Annexe II appears with minor changes on pp 364-381 of the 3rd edn, 
it is omitted in the English version.

[2]. The title page of the 1st edn26 is headed, in translation, ‘Yves LE GRAND/ Deputy Director of the Physical Laboratory of the National 
Museum of Natural History/ Head of Conferences at the Polytechnic School’.  In the 3rd edn27 LG is described as ‘Professor of the National 
Museum of Natural History/ Examiner of students of the Polytechnic School’.  From the French version of Wikipedia (27 March 2013) we learn that 
LG (1908-1986) obtained his doctorate in 1936 with a thesis on dispersion of light in the eye.  The same year he joined the Laboratory of Physics 
Applied to Living Beings of the National Museum of Natural History of which he later became Director.  From 1942 he taught physiological optics 
at the School of Optics.  In 1966 he was elected president of the French Society of Physiological Optics which he had helped to create.

[3]. Throughout LG uses straight lines for matrices (as now often used for determinants) instead of the curved brackets used here.  There is a 
typographical error in the 3rd edn27: the 2nd and 3rd entries 2na  and 3na  of the bottom row of this matrix are each given as 1na .

[4]. The last subscript q in this equation is incorrectly written p in the 3rd edn27.
[5]. LG uses multiplication signs (× ) and M is represented by  .
[6]. By a centred system LG means what is often called a symmetric system.  Refracting elements of the system are invariant under rotation 

about a common axis, the optical axis.
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projected onto the axis[7] are linked by a homographic 
transformation[8] which we will write in the form:[9]

(107) 
bax
dcxx

+
+

=′ .

The quantities[10] a, b, c, d are evidently determined 
only to a constant factor since the relation still holds 
when one multiplies them by the same number.  One 
will therefore be able to impose an arbitrary relation 
among these quantities.

The longitudinal magnification is expressed by:

( )2d
d

bax
adbc

x
x

+

−
=

′
.

If the extreme media have an index of refraction of 1 
the transverse magnification yy /′  is such that[11]

x
x

y
y

d
d

2 ′
=







 ′ ;

consequently, if we choose the condition
(108)[12] 1=− adbc
as arbitrary relation, then it becomes (one proves that 
it necessarily takes the sign +)[13]

(109)[14]  
baxy

y
+

=
′ 1 .

Quantities a, b, c, d, are called Gauss’s coefficients; a 
is a power, b and c numbers, and d a length[15].  From 
a knowledge of these coefficients, one immediately 
deduces the cardinal elements of the system[16]; 
the abscissas of the principal points are obtained 
by putting 1/ =′ yy  in equation (109), which 

gives ( ) abx /10 −=  and by substitution in (107) 

( ) acx /10 −=′ .  If one takes these points as origins, 

[7]. The picture is as follows:
 

x 

y′  

x′  

S 

O 
I 

y 

Object point O maps to an image point I through system S.
[8]. Also called a Möbius transformation. 
[9]. The equation number is given as (AII-1) in the 3rd edn.  Apparently this equation was better known in the past than it is today.  A derivation 

was given by Pendlebury70.  We derive it above (see Eq 26).  
[10]. After Eq (108) is applied these quantities become entries of the transference (Eq 1) of system S.  In particular Ca −= , Db = , Ac = , 

Bd −= .
[11]. The 3rd edn has ‘see exercise 3’ in brackets.  The compound system from object plane to image plane has transference 









−

′+
CxDC

xCA 0
 (Eqs 24 & 25).  Application of Eq 13 to the compound system shows that ( ) yyxCA ′=′+ .  Because of symplecticity (Eq

2) ( )( ) 1=−′+ CxDxCA .  Hence, the transverse magnification is ( )CxDxCAyy −=′+=′ /1/  in agreement with Eq (109).

[12]. The equation number is (AII-2) in the 3rd edn.  Because of Eq (108) the matrix 







ca
db  to be encountered below has unit determinant and 

is symplectic.
[13]. The plus sign follows the closing bracket in the original.  This is corrected in the 3rd edn.
[14]. Eq (AII-3) in the 3rd edn.
[15]. Although d has the dimension length it does not seem to be entirely accurate to call d a length.  For an air gap it is the negative of the length 

of the gap.  In general it is the negative of the disjugacy.  What LG calls Gauss’s coefficients are the entries of the inverse of the transference (see 
Footnote 26).

[16]. Because of the assumption of unit refractive index outside the system (see 2nd sentence of this paragraph) the nodal points coincide with 
the principal points expressions for the locations of which are given here.  Setting 0=x  in Eq (107) locates the emergent focal point at bdx /=′ .  
The incident focal point is obtained by setting 0=′x  in Eq (107), the result being cdx /−= .

cx
ax

ax

ax

Cx

Cx Cx

adbc
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it happens that 1== cb , 0=d  and equation (107) 
becomes[17]

a
xx
+=

′
11

which shows us that a is nothing other than the true 
power[18] of the system.  If one is satisfied with the 
choice of conjugate origins then 0=d , and from 
(108) 1=bc .[19]  Then equation (107) is written[20]

ba
x

b
x

+=
′

21 ;

we recover the frontal[21] notations, b designating the 

frontal factor[22] g ′  and ba  the frontal power fD′ .[23]

If the indices of refraction of the extreme media 

differ from 1 the expressions above remain valid[24] 
provided that x and x′  designate the reduced distances 
of the points considered from the respective origins.

Use of matrices. – The arithmetic of matrices allows 
the very simple determination of Gauss’s coefficients 
of a centred system, whatever its complexity.
1. If the system is a refracting surface of power D, the 
origins coinciding with the apex of the surface,[25] one 

has   D
xx
+=

′
11 ;   consequently   Da = ,   1== cb ,

0=d , which can be written[26]









=








ca
db

D 1
01

.

[17]. The system under consideration has now changed but the symbolism remains the same.  Originally the system was defined by the 
dashed vertical lines in the following sketch; it is now defined by the incident P and the emergent P′  principal planes whose longitudinal posi-

tions 0x  and 0x′  are now 0.  It follows from ( ) abx /10 −=  and ( ) acx /10 −=′  that 1== cb .  0=d because the new system is conjugate. 
 

x x′  

S 

O 
I 

y 
P P′  y′  

[18]. ‘la puissance vraie’ which is changed to ‘la puissance équivalente’ (equivalent power) in the 3rd edn.
[19]. Again the system changes but the symbols remain the same.  P and P′  in the sketch above are not necessarily principal planes but any 

pair Q and Q′  of conjugate planes.  0=d  because this new system, from Q to Q′ , is also conjugate and, hence, bc 1=bc  follows.  LG (p 38 of 
Ref 26) called x/1  proximité.  LG&EH (Le Grand and El Hage) (p 13 of Ref 29) used proximity and ascribed the concept and term to Herschel 
in 1827.  They also comment (p 14) that proximity and power are sometimes called vergence and convergence respectively, terms best avoided 
because of the other meanings they have in binocular vision.  Presumably the reference is to John Frederick William Herschel (1792-1871, lived 
in South Africa 1834-1838), the son of Frederick William Herschel who discovered Uranus and who died in 1822.

[20]. The equation follows directly from Eq (107) with 0=d  and bc 1=bc .  It is Eq 48 (except that fD′  is D′  there), together with Eq 52, 
on p 105 of Ref 26 and Eq 1.50 on p 22, together with Eq 1.49 on p 21, of Ref 29.

[21]. LG uses frontal instead of vertex.
[22]. ‘le facteur frontale’ which becomes ‘le facteur de forme’ (form factor) in the 3rd edn.
[23]. fD′  is the back (or image) frontal power (p 102 of Ref 26 and p 20 of Ref 29) usually known as back-vertex power.  LG (pp 102-105 

of Ref 26 and pp 19-22 of Ref 29) defines 4 frontal powers: forward frontal object power (front vertex power), forward frontal image power, 
rear frontal object power and rear frontal image power (back vertex power) but retains only the 1st and last.  Footnote 2 on p 104 of Ref 26 men-
tions that b was called effectivity factor by Smith and shape factor by Ogle.  In Ref 63 Smith refers to ‘so-called “effectivity” factors—not a very 
suitable name’.  For Ogle see Ref 71.

[24]. ‘valables’ which is changed to ‘exactes’ (correct) in the 3rd edn.
[25]. We have interpreted the French un dioptre de puissance D as meaning a refracting surface of power D.  It appears that x and x′  here 

are reduced distances.  If the indices of refraction either side of the surface were 1 then the power of the surface would be 0.  Dioptre meaning 
refracting surface is distinct from LG’s dioptrie which means dioptre (diopter in American English) the unit of power.  D is the symbol LG uses 
for power (puissance).

[26]. Using the values from Footnote [10] we obtain 







−

−
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AC
BD

ca
db .  Comparing this with Eq 1 we see that LG’s matrix is not the 

transference S but its inverse 1−S .  LG’s matrix 







1
01

D
 applies to a thin system (a refracting surface or thin lens) and to any Gaussian system 

but taken between its principal planes.
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2. Let us displace the origin of the images by reduced 
distance δ ;[27] the system[28], which before had 
coefficients 1a , 1b , 1c , 1d , has a, b, c, d such that[29]

( ) ( )
bax
dcx

bxa
bdxac

bxa
dxcxx

+
+

=
+

δ−+δ−
=δ−

+
+

=δ−′=′
11

1111

11

11
1

( ) ( )
bax
dcx

bxa
bdxac

bxa
dxcxx

+
+

=
+

δ−+δ−
=δ−

+
+

=δ−′=′
11

1111

11

11
1 ,

from which
1aa = , 1bb = , δ−= 11 acc , δ−= 11 bdd  (one can 

verify that condition (108) is satisfied), which can be 
written[30]
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10
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11
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3. Let us link a second system 2222 dcba  (with origins 

22OO ′ ) to the first system 1111 dcba  (with origins 

11OO ′ ) and let us consider the resulting system abcd  
(with origins OO ′ ); let us make O coincide with 1O  
and O′  with 2O′ .  We have

212

212
bxa
dxc

bax
dcxx

+′
+′

=
+
+

=′ , with 
11

11
1 bxa

dxcx
+
+

=′ ;[31]

from which by identification 

2121 acbaa +=

2121 adbbb +=

2121 ccdac +=

2121 cddbd += ,
which can be written[32]
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4. If we add to the three preceding results the associative 
character of matrix multiplication we obtain the 
following rule: consider a centred system made up of 
refracting surfaces of powers 1D , 3D , 5D , … separated 
by reduced distances 2δ , 4δ , …; the resulting system, 
of which the object origin coincides with the apex of 
the first refracting surface and the image origin with the 
apex of the last, has Gauss’s coefficients[33]

(110)[34] 
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Applications. – Expression (110) allows the immediate 
recovery of the formulae associated with Gullstrand 
(1).[35]  One can also use it for the numerical calculation 

[27]. The origin for x′  is shifted a longitudinal distance δ′n  as in the sketch below.  n′  is the index of refraction of the medium after the 
optical system. 

y′  

x x′  

O 
I 

y 

S 

δ′n  

1S  

[28]. What was optical system S now becomes system 1S .  System S now includes system 1S  and the homogeneous gap of width δ′n .
[29]. x, x′ , 1x′  are reduced distances.
[30]. For the reader familiar with transferences the order of multiplication here appears incorrect.  If the gap in the sketch has transference 2S  

then the transference of system S is 12SSS =  (Eq 20).  Because LG is multiplying inverse transferences (see Footnote [26]), his order is correct.  
See Eq 42.

[31]. The prime is missing from ( ) ( )11111 / bxadxcx ++=′  in the 3rd edn.
[32]. See Footnote [30].
[33]. See Footnote [30].
[34]. (AII-4) in the 3rd edn.
[35]. (1) refers to the footnote on the same page (p 325) which reads ‘(1) See exercises 43 and 44.’  The exercises follow the Annexe on p 329.

cx
ax

cx

ax

.
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of a complex system; for example let us apply it to the 
case of the theoretical non-accommodated eye:[36]

3462.481 =D  dt
43

2 109939.33771.1/1055.0 −− ×=×=δ  m

1077.63 −=D  dt
33

4 102805.23374.1/1005.3 −− ×=×=δ  m

0980.85 =D  dt
33

6 108169.242.1/104 −− ×=×=δ  m

147 =D  dt.
One calculates the successive products step by step; 
thus the products of the first three, the first five, and of 
the seven matrices equal[37]










 ×− −

98069.03564.2
109939.300244.1 4

4  










 ×− −

88410.05158.49
106855.298069.0 3










 ×− −

17446.09404.59
104480.590442.0 3

respectively.  The position of the object principal 
point will be

3105946.1
9404.59
90442.011 −×=

−
=

−
a

b
 
m;[38]

one will find the image principal point[39] in the same 
way: we obtain the values in table I (page 50)[40].

Moreover there will be every interest in preserving 
the origins of Gauss’s coefficients:[41] the object 
origin will be the apex of the cornea, a well-defined 
physical[42] point, and the image origin will be the 
apex of the posterior surface of the crystalline lens, 
which moves very little during accommodation.  If 
the eye is corrected one will introduce the correcting 
refracting surfaces in front of the eye and formulae 
(110) and (109) will allow us very easily to calculate 
the dimension of the retinal image,[43] assumed 

[36]. Note that this ‘eye’ excludes the vitreous body.  The index of refraction and width of the vitreous are not given in the Annexe.  If we 
take the index to be 1.336 (as given in tableau 1 on p 50 of Ref 26) and the width as 24.1965 mm (the value calculated on p 49 of Ref 26 to make 

the eye emmetropic) then we find that the transference of the whole eye, including the vitreous, is 










−
× −

90442.0D 9404.59
m 106832.1600000.0 3

.  That the 

top left entry is 0 shows that the eye is indeed emmetropic.  The inverse of the eye’s transference is 









 ×− −

00000.0D 9404.59
m 106832.1690442.0 3

. 

 

Note

also that dioptres is abbreviated dt and not D.  LG uses the decimal comma rather than the decimal point.  Here and in some places elsewhere he 
uses : instead of / for division.  Fewer significant digits are given in the 3rd edn; corresponding to the numbers here are the numbers 48.35, 0.55, 
1.3771, 3.99, 6.11, 3.05, 1.3374, 2.28, 8.10, 4.10, 1.42, 2.82, 14.

[37]. In Ref 26 the 1st 4 is missing from the bottom left entry of the 1st matrix and the last digit of the bottom right entry of the 3rd matrix is 

2 instead of 1.  The 4 and the 1 are made bold here.  In the 3rd edn the matrices are given as 











−
×− −

9807.0356.2
10994.3002.1 4

, 











−
×− −

8841.052.49
10686.29807.0 3










 ×− −

7446.094.59
10448.59044.0 3

, respectively, with the leading 4 again missing in the bottom-left entry of the 1st matrix and minus signs inserted in the 

bottom-right entries of the 1st and 2nd matrices.
[38]. m for metres was missing in the original.  This is the distance posterior from the 1st surface of the eye.  In the 3rd edn the position is 

given as 31059.1 −× .
[39]. The original has le p p image.  The image (or emergent) principal point has reduced position

 ( ) ( ) 3102607.49404.59/174461.0/1 −×−=−=− ac
( ) ( ) 3102607.49404.59/174461.0/1 −×−=−=− ac  

m, ie, 4.3224 mm anterior to the 2nd surface of the lens of the eye.  The index of refraction the vitreous is not given in the 
appendix.  In tableau 1 on p 50 of Ref 26 LG gives it as 1.336.  Using this value we find that the actual position is 5.6922 mm anterior to the 2nd 
surface of the crystalline lens of eye.  The same table positions the latter surface 7.6 mm from the 1st surface of the eye.  Hence the emergent 
principal point is 1.9078 mm into the eye in agreement with the number given in tableau 1.

[40]. In the original, tableau 1 extends across pp 50 & 51 of Ref 26.  The relevant data appear in the column with heading Théorique and 
subheading non accom.  The power and the locations of the principal points are given in the set of rows of the table marked as Œil complet on 
p 51.  Reference to the page number is omitted in the 3rd edn; the table is on pp 74 & 75 of that edn and many of the numbers there have fewer 
significant digits.

[41]. Gauss’s coefficients depend on the system and, hence, on the location of the system’s entrance and exit planes.  The origins are really 
for longitudinal positions x and x′  rather than for the coefficients themselves.

[42]. The original has concret.
[43]. One applies Eq (110), starting with the 1st surface of the compensating lens in front of the eye and ending with the posterior surface of 

the lens of the eye.  The resulting matrix gives a and b for use in Eq (109).  With the longitudinal position x of the object relative to the 1st surface 
of the eye and the height y of the object Eq (109) gives the height y′  of the image.

, 

, 

48

55 10 10

05 10 10

1010 42

14

10

10
49

10
59

10
59

5959
16 10

16 10
59

10 10
49 52

10

10
59 94

1059
95

,
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perfect[44]; in the case of a remote object the condition 
of correction is simply written according to (107):[45]

(111)[46]

 
x

a
c ′= ,

x′ designating the reduced distance from the posterior 
pole of the crystalline lens to the retina.  The use 
of matrices will greatly simplify the writing of 
ophthalmic calculations.  For example K. N. Ogle[47] 
used them successfully for studying aniseikonia 
(1936)[48].

Astigmatic systems. – Let us now consider a 

system consisting of astigmatic refracting surfaces[49] 
possessing a common normal (which one takes as axis 
Ox) and such that every plane section of one of these 
refracting surfaces with a plane passing through Ox is 
symmetric with respect to this axis[50], let us choose 
any axes 1Oy  and 1Oz  forming a trirectangular 
trihedron with Ox[51].

We know that one of these refracting surfaces is 
defined by its principal powers yD  and zD  and by the 
angle ϕ  which the principal section yO  makes with 
plane 1Oyx .[52]  Instead of these disparate quantities 

[44]. supposée au point.
[45]. The condition for compensation with an optical device (such as a lens) in front of the eye would be for c and a of the compound system 

from the 1st surface of the device to the back surface of the lens of the eye to be such that ac /  is the reduced length of the vitreous from the 
posterior surface of the lens to the retina.  One obtains this from Eq (107) by putting −∞→x  (a distant object).  The result is an indeterminate 
form which can be resolved by 1st dividing top and bottom by x to give ( ) ( )xbaxdcx /// ++=′  and then neglecting xd /  and xb / .

[46]. Eq (AII-5) in the 3rd edn.
[47]. Ref 71.
[48]. Instead of ‘(1936)’ the 3rd edn has ‘[72]’ which refers to the Ogle reference on p 398 of Bibliographie.
[49]. dioptres translated here as refracting surfaces.
[50]. Presumably axis Ox is an axis of mirror symmetry of the intersection of the surface and the plane containing Ox.
[51]. A plane (dashed in the following sketch) containing Ox intersects the surface with normal along Ox in the curve.  The intersection is the 

dotted line.
 

x O 

1z  

1y  

[52].  In the following sketch we are looking along longitudinal axis Ox.  1Oy  and 1Oz  are transverse axes, 1Oz  being perpendicular to 1Oy
Oy and Oz are the principal meridians of the surface and yD  and zD  the corresponding principal powers.  1Oy  is the reference transverse axis 
relative to which angle ϕ  is measured; anticlockwise measurements are positive.  Although 1Oy  can be in any direction orthogonal to Ox we shall 
assume it to be horizontal as in the sketch. 

 

Ox 1y  

yD  zD  

φ  

1z  

y 

z 

.  

∞−
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we will introduce three powers[53]

( ) öDDA zy 2sin−=

öDöDB zy
22 cossin +=

öDöDC zy
22 sincos += .

The system will then be defined by the powers A, 
B, C of each refracting surface, and by the reduced 
distances δ  which separate them.

Whereas, in Gauss’s approximation, a centred 
system is characterized by three independent 
parameters[54] [for example, Gauss’s four coefficients 
subject to relation (108)], to the same approximation, 
the astigmatic system under consideration needs 10 
independent parameters[55]: let us consider all the 
incident rays emitted by the point object; each of 
them has its direction defined by its three direction 

cosines α , β , γ  (projections on the coordinate axes 
of a segment of unit length), these being linked by 

the relation 1222 =γ+β+α ; it suffices for β  and 
γ  to be given to know the ray[56]; the corresponding 
emergent ray[57] will be characterized in the same way 
by β′  and γ′  and the system establishes a relation[58]

( ) 0,,, =γ′β′γβf
among these quantities.  The approximation similar to 
that of Gauss[59] consists in retaining, in the development 
of f, only terms with powers up to and including those 
of second degree, hence 15 coefficients, that is to say 
one constant, four terms of first order ( )γ′β′γβ ,,, , four 

squared terms ( )2222 ,,, γ′β′γβ  and six rectangular 
terms (βγ , etc);[60] as the relation remains valid if one 

[53]. Comparing these equations with Eqs 30-32 we see that 11fC =  and 22fB = .  However, because ϕϕϕ cossin22sin = , 122 fA =

Hence C and B are the diagonal entries of the dioptric power matrix F (Eq 29) while A is twice the off-diagonal entries, ie, 







=

BA
AC

2/
2/

F

This suggests that the expression for A should be ( ) öDDA zy 2sin2
1 −=  and that the omission of the factor 2

1  is a typographical error.  LG 

does not refer to the dioptric power matrix as such but it appears later as the bottom-left submatrix 







BA
AC

 of the 44×  matrix for an astigmatic 

refracting surface.
[54]. Although often stated, as here, that there are 3 independent parameters, that is not strictly correct.  If there were 3 independent parameters 

one would be able to assign arbitrary values to 3 of the parameters.  Assigning the value 0 to any 3 of the parameters violates Eq (108) and shows 

they are not independent.  On the other hand, provided that it exists, the principal matrix logarithm of 







ca
db

 does have 3 independent parameters 
(the off-diagonal entries and 1 of the diagonal entries)44.

[55]. A comment similar to Footnote [54] applies here.  It is not strictly correct to say that there are 10 independent parameters.  Eq (108) is 
equivalent to saying that M is symplectic.  A symplectic matrix obeys Eq 5.  If M is 44×  then the matrix equation EEMM =T  is equivalent to 
6 equations among the 16 entries.  The 6 equations are contained within the 3 matrix equations, Eqs 7-9.  Provided it exists the principal matrix 
logarithm of M has 10616 =−  independent entries.47

[56]. 2 direction cosines uniquely define the incident segment of a ray from the object point.
[57]. The emergent segment of the ray.
[58]. A ray leaving the object point with particular direction cosines β  and γ  arrives at the image point with direction cosines β′  and γ′ ; f 

relates β , γ , β′ , γ′ .
[59]. No reference is given in Refs 26 & 27.  P 328 of Ref 29 gives the reference ‘Gauss: Dioptrische Untersuchungen (Gӧttingen 1840)’.  See 

Ref 69.
[60]. For β  and γ  approaching 0 we approximate the function as a sum of terms up to 2nd degree, ie we write

.0
constant) (the                                                                      

order)first  of four terms (the                                       
r terms)rectangulasix  (the      

 terms)squaredfour  (the                                          2222

=
+

′+′+++

′′+′+′+′+′++

′+′++

Q
PNML

KJHGFE
DCBA

γβγβ
γβγγβγγββββγ

γβγβ

The 15 coefficients are A, B, C, D, E, F, G, H, J, K, L, M, N, P, Q.  A ray from an object point through the system obeys this equation.  Also the 
direction cosines become slopes or inclinations.  β  and γ  become the 2 components 01a  and 02a  of the incident vectorial inclination 0a  and 
β′  and γ′  components of the emergent inclination a.

( )γ′β′γβ ,,,( )γ′β′γβ ,,,

11 22 12.  

.  

EM

16 10

.0
constant) (the                                                                      

order)first  of four terms (the                                       
r terms)rectangulasix  (the      

 terms)squaredfour  (the                                          2222

=
+

′+′+++

′′+′+′+′+′++

′+′++

Q
PNML

KJHGFE
DCBA

γβγβ
γβγγβγγββββγ

γβγβ

of

01 02

ϕ

ϕϕ

ϕ ϕ

ϕ
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multiplies these 15 coefficients by the same number 
only 14 of them are independent;[61] but, further, given 
the recognized symmetry, nothing changes if β , γ , 
β′  and γ′  all change sign together[62] which annuls 
the coefficients of the terms of first order: hence 10 
independent parameters.

Just as we defined a centred system by a matrix 
of second order, we will be able to represent our 
astigmatic system by a matrix of fourth order, which 
we will symbolize by M, and write[63]



















=

hlca
kgbd
qnfi
mpje

M .

The 16 terms of this matrix include four powers[64] 
(a, b, c, d), eight numbers[65] (e, f, g, h, i, j, k, l) and 
four lengths[66] (m, n, p, q); there exist six relations[67] 
among these terms, which reduce the number of 
independent coefficients to 10.

One can extend the results obtained above for 

centred systems to astigmatic systems; we will state 
them without demonstration for which we refer the 
reader to the reports by T. Smith (1928).[68]

1. For a single refracting surface, the origins being 
coincident with its apex, it becomes[69]

M=



















10
01
0010
0001

BA
AC

.

2. Let us displace the origin of the images by a 
reduced distance 1δ .  The system 1M  becomes[70]

MM =


















δ−

δ−

1000
0100

010
001

1 .

3. In keeping with the same conventions for the 
origins for the centred system the linking of two 
systems 1M  and 2M  is written[71]

[61]. The ray also obeys the same equation if all the coefficients are multiplied by a constant.  Eg if A is not 0 we could multiply all the 
coefficients by A/1 ; in effect then A reduces to 1 and we are left with 14 coefficients.  The same would apply for any other nonzero coefficient.

[62]. The system has 2-fold rotational symmetry about the optical axis.  Consider rays from an object point on the optical axis.  Consider in 
particular a ray whose incident segment has inclinations β  and γ ; it has emergent inclinations β′  and γ′ .  Because of the symmetry there is also 
a ray with incident inclinations β−  and γ−  and emergent inclinations β′−  and γ′− .  This latter ray must also satisfy the equation in Footnote 
[60].  Thus the equation must still hold if the signs of all the inclinations are changed which is possible only if 0==== PNML .  4 more 
coefficients disappear and we are left with 10.

[63]. As for Gaussian optics (Footnote [26]) M is 1−S .  Identifying the entries of M and 1−S  (Eq 41) gives the relationship of LG’s 16 scalars 
to entries of the fundamental properties.

[64]. d, b, a, c are the 4 entries of the transposed power TF  (see Eq 4).  Although F is symmetric for a thin system (see Eq 31) it is not 
symmetric in general.

[65]. e, j, i, f are entries of TD  and g, k, l, h entries of TA .
[66]. p, m, n, q are the entries of TB− .
[67]. They are the 6 scalar equations contained in matrix Eq 5.
[68]. In the Bibliographie on p 344 there are the 2 references ‘T Smith, On toric Lenses.  [Trans Opt Soc] 29 (1927-1928). p. 71’ and ‘T. Smith, 

The primordial coefficients of Asymmetrical Lenses.  Ibid., p 167’.  Instead of ‘(1928)’ the 3rd edn has ‘[76]’ and the corresponding entry in the 
bibliography on p 399 reads ‘T. Smith, On toric lenses.  Ibid., 29 (1927-1928), 71 et 167’.  See Refs 64-68.

[69]. A, B, C are as given above except the missing factor 2
1  should be inserted in the expression for A.  See Footnote [53].

[70]. The 3rd edn reads “The system becomes 1M  such that …”  This does not seem very clear.  Displacing the origins of the images by 
reduced distance δ  is equivalent to considering the compound system of refracting surface followed by homogeneous gap of reduced width δ .  
If 1M  represents the matrix given above for the refracting surface then the matrix for the compound system becomes

MM =


















δ−

δ−

1000
0100

010
001

1
                                               

.

One is multiplying the inverse transference of an astigmatic refracting surface by that of a homogeneous gap:

M=



















δ−δ−
δ−δ−
δ−

δ−

=


















δ−

δ−



















BABA
ACAC

BA
AC

1
1

010
001

1000
0100

010
001

10
01
0010
0001

.

Compare Footnote [27].
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MMM =21 .
4. For a point object at infinity on axis Ox the 

condition for correction of astigmatism is written[72]

(112)[73]
 x

d
g

c
h

b
k

a
l ′==== ,

where x′  designates, as in equation (111), the reduced 
abscissa of the image.  This correction holds then for 
points next to the axis.

5. However the image is not like the object; the 
transverse magnification[74] in particular varies with 
direction; to correct the defect the supplementary 
condition[75]

(113)[76] dc =      (or hg = )
must be realized. 

Application to the eye. – It can happen that the 
astigmatic eye depends effectively on 10 independent 
parameters:[77] this happens if the cornea and the two 

surfaces of the crystalline lens are all three astigmatic 
with the axes mutually oblique.  Even in this case 
condition (112) can be verified and the eye corrected 
by an ordinary thin astigmatic lens:[78] this introduces, 
in effect, four parameters (its three powers A, B and 
C and its distance to the eye), which will allow the 
realization of the four equations (112); however, all 
the possibilities are exhausted and one cannot obtain 
a magnification independent of the direction.[79]  To 
realize (113) one needs to dispose of one more variable 
and thus introduce thick correcting systems.[80]

Let us consider the simple case in which the 
cornea presents the only astigmatism; we will realize 
the correction with a thick glass composed of two 
toric surfaces separated by a reduced distance 2δ , 
the second face being a distance 4δ  in front of the 
cornea; taking the principal sections (the same for 
the three surfaces[81]) as coordinate planes, conditions 

,

[72]. The compound system from the anterior surface of the optical instrument in front of the eye to the retina must be exit-plane 
focal, ie Eq 35 holds.  Hence the bottom-right 22×  submatrix of the inverse transference (Eq 41) must be null.  However the inverse 
transference is 



















′−′−

′−′−

′−′−

′−′−

=


















′−

′−



















xchxalca
xbkxdgbd
xfqxinfi
xjmxepje

x
x

hlca
kgbd
qnfi
mpje

1000
0100

010
001

.

Hence 0=′−=′−=′−=′− xchxalxbkxdg  from which the result follows.  Notice that 







=








′

hl
kg

ca
bd

x .
[73]. (AII-6) in the 3rd edn.
[74]. In the context of the Gaussian optics above ‘transverse magnification’ means yym /′= .  The generalization in linear optics 

would be the matrix M such that My yMy ′= , a magnification from a transverse position to a transverse position with M dimensionless.  
However this is not what is meant here.  Here transverse magnification is a cross-magnification M from angular position of the object to 
transverse position of the image: Ma yMa ′= .  M has the physical dimension of length.

[75]. 2 supplementary conditions are required for sharp images to be free of distortion: conditions (a) and (b) given just after Eq 40.  
LG’s condition ‘ dc = ’ corresponds to the 1st half of condition (a), equality of the diagonal elements of the dioptric power F or the 
rotation matrix of Eq 38.  It omits the 2nd part of condition (a) and the whole of condition (b).  It follows that his condition is neither 
necessary nor sufficient.  If dc =  then for no distortion it must also be true that ba −=  (corresponding to the off-diagonal elements of 
Eq 38).  However it is also possible for image size to be independent of orientation of the object if dc −=  and then it must also be true 
that ba =  (corresponding to Eq 39).  The necessary and sufficient condition for image size to be independent of object direction then is 
that ( ) ( )bdac −±=  or ( ) ( )khlg −±= .  However, if one limits consideration to the naked eye and the eye compensated by 
means of conventional optical devices including spectacle and contact lenses then it is safe to disregard condition (b).  Furthermore the 
off-diagonal elements of F in these cases are usually close to 0 so that one expects the 2nd part of condition (a), namely that ba −= , to 
be nearly satisfied anyway.  It follows that LG’s condition can be regarded as necessary and sufficient for most practical applications in 
optometry.

[76]. Eq (AII-7) in the 3rd edn.
[77]. This is true of eyes as of optical systems in general.  But see Footnote [55].
[78]. Eq 46 gives the divergence or power of the thin compensating lens.
[79]. This is usually true.  However image size is independent of object orientation in the case of an eye for which there exists a scalar 

1ς  such that BA +ς1  is a scalar multiple of a rotation (or reflection) matrix, a result that follows from application of Eq 17 to the system 
of lens and eye (Eqs 44 & 45).  An obvious example is an eye with no astigmatic refracting surfaces.

[80]. Application of Eqs 35 & 40 to the compound system of eye and optical instrument (Eq 48) shows that that the eye and 
instrument must satisfy both Eqs 49 & 50.

[81]. Because the principal meridians of the 3 surfaces are matching linear optics is unnecessary; Gaussian optics can be used twice, 
once in each principal meridional plane.  Using linear optics here we choose the reference meridian 1Oy  to lie in a principal meridional 
plane Oy.  Hence 0=ö .

DC
BA
+−
−

=
O

O
I ζ

ζζ
DC

BA
+−
−

=
O

O
I ζ

ζζ

ϕ
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(112) and (113) reduce to[82]

( )[ ] ( ) ( ) yy42231y43y421 11 RRBBRBRB =δδ+δ−δ++δ+δ+ ,
( )[ ] ( ) ( ) zz42231z43z421 11 RRCCRCRC =δδ+δ−δ++δ+δ+

( )( ) ( ) ( ) 04231314334211 =δδ−−δ−+δ+δ− BBCCBCBC

where yR  and zR  designate the ametropias measured 
at the corneal apex.  There[83] is an infinity of solutions, 
which allows a supplementary condition to be given.  

For example, for 42 =δ  mm, 124 =δ  mm, 7y −=R  

[82]. The compensating system in front of the eye has transference given by Eq 34.  For a sharp image it must satisfy Eq 49 or, equivalently, 
Eq 51.  We substitute for CA  and CC  from Eq 34 into Eq 49 and make use of Eq 4.  After a little rearrangement we arrive at the condition for a 
sharp image:

( )( ) ( ) ( ) 0130423041042 FFFFIFFIFFI =δ+δ−δ++δ+δ+ .     (57)

This holds in general.  We now apply it to the particular example.  Because 0=ö  we have for the 1st surface of the lens 







=

1

1
1 0

0
B

C
F  and 

similarly for the 2nd surface.  Also 







=

z

y
R

R
0

0
0F where yR  is the corneal-plane refractive compensation in the reference meridian and zR  in 

the meridian orthogonal to it.  All the matrices in Eq 57 are diagonal.  Multiplying out we obtain the 2 scalar equations

( )[ ] ( ) ( ) yyyy RCCRCRCR =δ+δ−δ++δ+δ+ 314234142 111      (58)

( )[ ] ( ) ( ) zzzz RBBRBRBR =δ+δ−δ++δ+δ+ 314234142 111      (59)

which are identical to the 1st 2 of LG’s 3 equations except that y and z are interchanged.  His equations are obtained if we choose 1Oy  to 

coincide with Oz instead of Oy in which case °= 90ö .  For an undistorted image Eq 55 must also be satisfied.  The transference of the cornea is 









−

=
IF
OI

S
K

K  where 







=

K

K
K 0

0
B

C
F .  Because there are no astigmatic elements in the rest of the eye the fundamental properties of the 

rest of the eye are scalar matrices.  Thus we can write 







=

II
II

S
RR

RR
R DC

BA
 for the transference of the rest of the eye.  Hence the transference of 

the eye is









−
−

=







−








=

IFI
IFI

IF
OI

II
II

S
RKRR

RKRR

KRR

RR
DDC
BBA

DC
BA

     (60)

and so IB RB= .  Hence Eq 55 becomes

( )( ) RFFIFFI R1123412 Bm−=+δ−δ−δ− .       (61)
Again the matrix on the left is diagonal, the diagonal entries being

( )( )1123412 11 CCCC +δ−δ−δ−         (62)
( )( )1123412 11 BBBB +δ−δ−δ− .        (63)

Because the off-diagonal entries are 0 Eq 55 can be satisfied in 2 distinct ways: °=θ 0 , in which case IRR == °0 , or °=θ 45 , in which case 
°= 45RR .  In the 1st case the diagonal entries are equal; their difference is 0 from which we obtain the 3rd of LG’s equations.  In the 2nd case 

their sum is 0 which results in
( )( ) ( ) ( ) 24231314334211 =δδ+−δ++δ+δ+ BBCCBCBC .     (64)
The 2 cases correspond to conditions (a) and (b) respectively (see Condition for sharp undistorted images).  Although a theoretical alternative 
to LG’s 3rd equation this equation leads to absurd results in ordinary applications when used instead of his equation.  Eg if we take LG’s values 
for 2δ , 4δ , 1C  and use this equation instead of his 3rd equation we obtain the powers 62.4931 =B  D, 32.53 −=C  D, 91.4983 =B  D.  
Alternatively if 142 =δ=δ  m, 21 =C  D we obtain 5.01 −=B  D, 25.33 =C  D, 5.13 =B  D.  Apparently if widths are reasonable powers 
are ridiculous and if powers are reasonable widths are ridiculous.  This serves to illustrate the fact that condition (b) can be disregarded in practice 
in ordinary optometric applications.

[83]. There is a typographical error in the original (corrected in the 3rd edn): ‘I y a’ should read ‘Il y a’.
[84]. The original has 5 instead of the correct 8 shown bold here.
[85]. The original has 6 instead of the correct 9 shown bold here.
[86]. By astigmatism LG evidently means zy RR − .
[87]. In the 3rd edn LG adds a 1-sentence paragraph: “For these applications of matrix arithmetic to ophthalmic optics one can consult the 

paper by Miss Bourdy [55].”  On p 398 under Bibliographie Ref 27 reads [55]‘C. Bourdy, Calcul matriciel et optique paraxiale.  Rev. d’Opt., 41 
(1962) 295.’  See Ref 72.

dt and 5z −=R  dt, one can adopt the following values:

83.61 +=B  dt[84]   91.143 −=B  dt[85]   01 =C    

32.53 −=C  dt.
However, as long as one imposes a reasonable 

limit on the thickness of the correcting glass, it 
will only be possible in this way to correct those 
astigmatisms that barely exceed 2 dt;[86] and in this 
case the deformations which result from variation of 
the transverse magnification remain sufficiently weak 
for it not to be necessary to calculate it.[87]

12

14

90

45
45

63 32 91
25

32

ϕ

ϕ

,
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EXERCISES [p 329]

[p 332]
EXERCISE 43 (Appendix II). – By means of Gauss’s 
coefficients establish the formulae associated with 
Gullstrand.

EXERCISE 44 (Appendix II). – The same problem in 
frontal notation.

SOLUTIONS TO THE EXERCISES [p 333]

[p 341]
43. – If the component systems are referred to their 
principal points, expression (110) provides us with 
the resulting matrix









=















 δ−








ca
db

DD 1
01

10
1

1
01

21
,

which gives

2121 DDDDa δ−+= ,

21 Db δ−= ,

11 Dc δ−= ,
δ−=d .

We have seen that the resulting power was a, and 
that the reduced abscissas of the principal points are 
written ( ) ab /1−  and ( ) ac /1− .  Whence Gullstrand’s 
formulae.[88]

44. – In designating the abscissa in the first system 

[88]. On p 343 of his Bibligraphie LG gives the reference ‘A. Gullstrand, Einführung in die Methoden de Dioptrik des Auges 
des Menschen. (Leipzig, 1911)’.  The formula for a is the formula often referred to as Gullstrand’s formula.  Notice the order of 

multiplication 21DD ; it is correct here (in Gaussian optics) but must be reversed to 12DD  when the formula is generalized to linear 
optics.10, 73-75

[89]. Multiplication results in
( )
( )( ) ( ) ( ) 
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′−′′−′
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′′′ξ−′′′′ξ−+′′

′ξ′−′′ξ−′′

ggD
gxgDxg

ggDggDDDg
gggDgg

/1/
//

/1//1
// 00

211122112

212221 .

Equating the bottom-right entries and rearranging we obtain the shape factor

ξ′−
′′

=′
1

21
1 D

ggg ,          (65)

which is the equation near the bottom of p 108 of LG and Eq 10.5 of LG&EH.  From the bottom-left entries and Eq 65 we obtain the 

back-vertex power (frontal rear power in LG&EH) 2
1

1
2

2
1

D
D
DgD ′+
′−
′′

=′
ξ

, Eq 58 on p 108 of LG and Eq 10.4 of LG&EH.

[90]. Ex 22 (on p 330 of LG) reads: ‘By means of homography examine the combination of two centred systems in frontal 

notation.’  The solution is on p 337 of LG.

by 0x  from the resulting object origin one obtains[89]
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Whence the classical formulae by identification (see 
exercise 22)[90].
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