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Introduction

The aim of contemporary cataract surgery is to 
obtain optimal uncorrected visual acuity over the 
most extended fixation range.  This may be achieved 
by the system of monovision where one eye is 
targeted for distance and the other eye for near.1, 2  
Monovision has been widely used with contact lenses.  
In younger presbyopes some residual natural lens 
accommodation remains in eyes fitted with contact 
lenses and the procedure is essentially reversible.3  On 
the other hand there is essentially no accommodation 
in the pseudophakic eye, and any change in refraction 
will require new surgical procedures4, 5.  It is therefore 
important to establish appropriate target refractions 
for the far and near eye, and to analyse the impact of 

deviations from these targets.
A simple model has recently been described by 

Naeser and coworkers6 for defining suitable target 
refractions DF  and PF  for each eye following surgery 
for bilateral monofocal pseudophakia.  Subscripts D 
and P suggest distal and proximal respectively.  The 
model leads to the optimal target refractions
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the distal refraction for one eye, and
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= ,                              (2)

the proximal refraction for the other eye. Dz  and  
zP are the axial positions defined in Figure 1; they 
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represent a range in front of the eye within which 
object points are supposed to be visible with minimal 
blur.  They are measured in the direction opposite to 
the direction of light which is defined by longitudinal 
axis Z and are negative.  We set

0PD << zz .                          (3)  
Because hyperopic refractions would induce blur for 
both distant and proximal fixation we take the target 
refractions to be myopic and set

0DP << FF .              (4)

 

Pz  

Dz  

Z 

Figure 1  Range of positions in front of the eye in which objects 
should be seen with minimal blur.

 Dz
 
and

 Pz
 
represent the 

distal and proximal limits of the range.  Both are negative.

The purpose of this paper is to take a closer look at 
the mathematics underlying the theory.  We examine 
the nature of the mean binocular error as a function 
of the four variables FD, PF , Dz  and zP and show 
formally that Equations 1 and 2 do indeed represent 
a global minimum.  We also examine the nature of 
the mean binocular error in the neighbourhood of the 
minimum.  It is convenient here to use a mathematical 
notation which differs from that used originally6.

The surgeon’s objective is to give the patient 
optimal vision for objects in the range from a distant 
transverse plane at axial position Dz  to a proximal 
transverse plane at axial distance Pz  (Figure 1).  
What refractions DF  and PF  should he or she aim 
for in the two eyes?  Figure 1 suggests that Dz  and 

Pz  are measured from the cornea; they could also be 
measured from the spectacle plane.  The refractions 
in those cases are corneal- and spectacle-plane 
refractions respectively.

Pseudophakic eye

Implicit in the discussion so far is that the refractions 
of the two pseudophakic eyes should be stigmatic, 

Z

that is, DF and PF  should be real scalars.  However 
there are advocates of astigmatic refractions7-11.  In 
order to allow for that possibility we work instead 
with the 2x2 dioptric power matrix F  instead of the 
scalar F.  Scalar target refractions DF and PF  are 
replaced by matrix target refractions FD and FP.  As 
explained elsewhere12 F  can be expanded as

KJI FFF KJIF ++=                                                        
                                                                 

(5)

where I is an identity matrix,
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and FI, FJ and FK are scalar coefficients of the power 
F .  FI represents the scalar component; it is identical 
to what Naeser and Hjortdal6, 13, 14 represent by SEP and 
what is commonly called the equivalent sphere.  FJ and 
FK account for the astigmatism; they are essentially 
equivalent to what Naeser and Hjortdal14 represent by 
KP(90) and KP(135) and Thibos and coworkers15 by 
J0 and  J45  respectively.  The magnitude of the power 
F is12

2
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I FFF +=                         (8)

where
2

K
2

JA FFF +=              (9)

can be thought of as the magnitude of the astigmatism.  
In particular the coefficients of FD are FDI, FDJ and FDK 
and the two magnitudes are FD and FDA and similarly 
for FP . Thus the surgeon’s objective is rephrased 
as, for what possibly astigmatic distal and proximal 
refractions FD and FP should he or she aim in order 
to obtain optimal visual acuity in the fixation interval 
from zD to zP?

Consider a pseudophakic eye of refraction F which 
views an object in a transverse plane at axial position 
z. If it so happens that z/IF =  there will be no blur.  
In general there is an error

z/e IFF −=              (10)
of magnitude

( ) 2
A

2
Ie /1 FzFF +−=            (11)
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represent a range in front of the eye within which 
object points are supposed to be visible with minimal 
blur.  They are measured in the direction opposite to 
the direction of light which is defined by longitudinal 
axis Z and are negative.  We set

0PD << zz .                          (3)  
Because hyperopic refractions would induce blur for 
both distant and proximal fixation we take the target 
refractions to be myopic and set

0DP << FF .              (4)
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Figure 1  Range of positions in front of the eye in which objects 
should be seen with minimal blur.

 Dz
 
and

 Pz
 
represent the 

distal and proximal limits of the range.  Both are negative.

The purpose of this paper is to take a closer look at 
the mathematics underlying the theory.  We examine 
the nature of the mean binocular error as a function 
of the four variables FD, PF , Dz  and zP and show 
formally that Equations 1 and 2 do indeed represent 
a global minimum.  We also examine the nature of 
the mean binocular error in the neighbourhood of the 
minimum.  It is convenient here to use a mathematical 
notation which differs from that used originally6.

The surgeon’s objective is to give the patient 
optimal vision for objects in the range from a distant 
transverse plane at axial position Dz  to a proximal 
transverse plane at axial distance Pz  (Figure 1).  
What refractions DF  and PF  should he or she aim 
for in the two eyes?  Figure 1 suggests that Dz  and 

Pz  are measured from the cornea; they could also be 
measured from the spectacle plane.  The refractions 
in those cases are corneal- and spectacle-plane 
refractions respectively.

Pseudophakic eye

Implicit in the discussion so far is that the refractions 
of the two pseudophakic eyes should be stigmatic, 

Z

which we take to be a measure of the blur in that 
eye when it views the object at axial position z.  
(Elsewhere6 it is called the defocus.)  It is evident 
from Equation 11 that the error is minimized if 

02
A =F . This implies 0KJ == FF  in Equation 9 and, 

hence, that the refraction is IFIF =  and, hence, is 
purely stigmatic.  It follows that the refraction can be 
completely characterized by the scalar IF  and that we 
can drop matrices from the discussion and revert to 
scalars.  Furthermore the subscript on IF  is redundant 
and we can write F instead.  Thus Equation 11 reduces 
to

( )2e /1 zFF −= .           (12)

We shall refer to eF  simply as the (monocular) error.
Below we shall need the integral of the 

error eF  over the range Dz  to Pz , namely  

( ) 2log 2
DPDPe

P

D

−−+=∫ FzzFzzdzF
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z
.         (13)

(Elsewhere6 it is called the cumulative defocus.)
Written in particular for the eye with refraction DF  

Equation 12 becomes

( )2DDe /1 zFF −=            (14)

and similarly for the eye with refraction PF  and error 
FPe.  The two errors FDe (blue) and FPe (red) vary 
with z  as illustrated in Figure 2.  Figure 2 is drawn 
for FP 15.1P −=F 0.27 D and  FP 15.1P −=F 1.15 D, the refractions 
calculated before6.  The two error curves intersect 
in the point with axial position χz  and error χeF .  
Hence, from Equation 14 and its counterpart for FPe, 
we obtain

( ) ( )2P
2

D /1/1 χχ zFzF −=−          (15)

or

( )χχ zFzF /1/1 PD −±=− .                      (16)
The plus sign corresponds to the case PD FF =  which 
is disallowed by Inequality 4.  We are left with

χχ z
F

z
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Thus the two error curves intersect where the inverse 
of the axial position is simply the arithmetic average 
of the two refractions.

Figure 2  The monocular errors FDe (blue) and FPe (red) for 
refractions 27.0D −=F 0.27 D and 15.1P −=F 1.15 D.  (Modified from 
Reference 6.)

Substitution from Equation 19 into Equation 14 
gives the error at the intersection,

2
PD

e
FFF −

=χ .                                                              (20)

Thus the inverse of the axial position of the intersection 
in Figure 2 is the semi-sum (Equation 19) and the error 
there is the semi-difference (Equation 20) of the two

 

refractions.  In particular for Figure 2 71.01
−=

χz

 

0.17 D 

and 44.0e =χF  0.44 D approximately.

Binocular error

In agreement with the assumption made by Naeser 
and coworkers6 we now define the binocular error Fbe 
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Figure 3  The mean binocular error  beF  as a function of the 

proximal FP and distal FD refractions for a region around the 

minimum, the units being dioptres.  The object range is 6D −=z  m 

to 33.0P −=z  33 m.

Figure 4  A contour plot of the mean binocular error beF  as 
a function of the proximal FP and distal FD refractions for the 
object range 6D −=z  to 33.0P −=z  m. The minimum mean 

binocular error, 1712.0bem =F D, is represented by the dot, the 
corresponding optimum target refractions being 1513.0Pm −=F  
and 2700.0Dm −=F  D.  The contours are at intervals of 0.025 D.  
The innermost contour is at 0.175 D.  Towards the top left the 
surface rises steeply; contours there at levels greater than 0.5 D 
have been omitted.

as the lower of the two monocular errors.  Thus
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as is clear from Figure 2.  The mean binocular error 
over the range of object positions from Dz  to Pz  is

dzF
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F
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which, making use of Equation 21, we can split into 
the sum of two integrals as
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Each integral is of the form of Equation 13.  Hence, 
applying Equation 13 twice we obtain
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which with substitution from Equation 18 simplifies 
to





















−








+

++
−

= 2
4

11

log1

DP

2

DP
PPDD

DP
be zz

FF
FzFz

zz
F

                     
                                                                                        (25)
Equation 25 represents the mean binocular error as 
a function of the four independent variables, the two 
refractions FD and PF  and the extremes of the object 
range zD and Pz .

Equation 25 is plotted as a surface in Figure 3 for  
zD = 33.0P −=z  6 m and zP = 33.0P −=z  0.33 m for a range of values of 

PF  and a range of values of FD.  The height of the 

surface represents the mean binocular error beF  for 
the particular values of zD, zP, FD and FP.  Figure 
4 is a contour plot of the surface.  The dot locates 
the minimum mean binocular error 1712.0bem =F  
D.  The contours are at intervals of 0.025 D.  The 
innermost contour is at 0.175 D.  Towards the top 
left the surface rises steeply; contours there at levels 
greater than 0.5 D have been omitted.  As these figures 
show the surface has the form of a relatively long and 
narrow valley with a single minimum.
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Figure 3  The mean binocular error  beF  as a function of the 

proximal FP and distal FD refractions for a region around the 

minimum, the units being dioptres.  The object range is 6D −=z  m 

to 33.0P −=z  33 m.

Figure 4  A contour plot of the mean binocular error beF  as 
a function of the proximal FP and distal FD refractions for the 
object range 6D −=z  to 33.0P −=z  m. The minimum mean 

binocular error, 1712.0bem =F D, is represented by the dot, the 
corresponding optimum target refractions being 1513.0Pm −=F  
and 2700.0Dm −=F  D.  The contours are at intervals of 0.025 D.  
The innermost contour is at 0.175 D.  Towards the top left the 
surface rises steeply; contours there at levels greater than 0.5 D 
have been omitted.

Dependence of the mean binocular error on the 
two refractions

From Equation 25 we obtain the two derivatives
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We are seeking values of refractions DF  and PF  that 
minimize the mean binocular error Fbe (given by 
Equation 25) over a specified object range from zD to 
zP.  They are the optimal target refractions which we 
represent by FDm and FPm.  A necessary condition 
that beF  has a minimum at PmP FF =  FDm and PmP FF =  FDm 
is that the derivatives of Equations 26 and 27 vanish.  
This gives us two equations in the two unknowns 
FDm and FPm.  Solving them we find that
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and
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Inequality 3 implies that PPD zzz > .  The plus 
sign in the above two equations then implies 0Pm >F    
in violation of Inequality 4 and must, therefore, be 
dropped from both equations.  Hence we obtain 
Equations 1 and 2.

Equations 1 and 2 are necessary but not sufficient 
conditions for a minimum in binocular error.  To 
ensure they represent a minimum we need to determine 
second derivatives.  They turn out to be

( )
( )( ) 2

D
2

PDDP

PDP
2

D

be
2 22

FFFzz
FFF

F
F

+−

+
=

∂

∂
         (30)

be 

be 

Fbe

FDm 

FPm 

FPm 

be 

( )
( )( ) 2

P
2

DPDP

DPD
2

P

be
2 22

FFFzz
FFF

F
F

+−

+
=

∂

∂

                           
(31)

and

( )( )2PDDPDP

be
2 2

FFzzFF
F

+−
−=

∂∂
∂ .                          (32)

Then

( ) ( )2PD
2

DPPD

2

DP

be
2

2
P

be
2

2
D

be
2 8

FFzzFFFF
F

F
F

F
F

+−
=











∂∂
∂

−
∂

∂

∂

∂

( ) ( )2PD
2

DPPD

2

DP

be
2

2
P

be
2

2
D

be
2 8

FFzzFFFF
F

F
F

F
F

+−
=











∂∂
∂

−
∂

∂

∂

∂

         
(33)

Because of Inequalities 3 and 4 the right-hand sides 
of Equations 30, 31 and 33 are all greater than zero.  
Thus the sufficient condition16 is satisfied and, hence, 
Equations 1 and 2 do indeed define a unique minimum 
mean binocular error Fbem over the specified range of 
object positions.

Evaluated at the minimum of surfaces of the type 
shown in Figures 3 and 4 Equations 30 and 31 give 
the curvature of the surface at the minimum in a 
direction parallel to the DF  and PF  axes respectively.  
(A positive curvature means that moving along 
the surface from the minimum takes one upward; a 
negative curvature would imply a maximum instead 
of the minimum we have here.)

For 6D −=z m and 33.0P −=z 33 m Equations 1 and 
2 give optimum refractions FDm 2700.0Dm −=F  D and  
FPm 1513.1Pm −=F  D.  The binocular error is zero at axial 
distances 7036.3/1 Dm −=F m   
For objects at axial distances 6D −=z  m and 

33.0P −=z 0.33 m the binocular errors are 0.1033 D and 
1.8790 D respectively.  The latter figure represents 
the maximum binocular error for the object range 
and is at the proximal point of the range.  With these 
optimal refractions the axial position for error equality 
of the two eyes is (Equation 18) 4071.1−=χz  m, 
the binocular error there being (Equation 14) F F 
F 4071.1−=χz 4407.0be =χF D.  The mean binocular error for the 
object range (Equation 25) is 1712.0be =F  D.  
With these refractions Equations 30 and 31 result in 

6636.4/ 2
Dbe

2 =∂∂ FF m and 0915.0/ 2
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m.  Thus the curvature at the minimum in the FD 
direction is more than 50 times the curvature in the FP 
direction.  There is, therefore, much greater tolerance 
for errors in the proximal target refraction FPm than in 
the distal target refraction FDm.

Dependence of the mean binocular error on the 
object range

From Equation 25 we also obtain the derivatives
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For the object range 6D −=z m  zP 33.0P −=z    m  

and the optimal refractions calculated above 
one obtains D/m 01196.0/ Dbe =∂∂ zF  and 

D/m 30120.0/ Pbe =∂∂ zF .  Thus the sensitivity of the 
mean binocular error to small change in the proximal 
limit of the object range is nearly 30 times that in the 
distal limit.

Concluding remarks

The analysis here provides formal proof of the 
result presented before6 that the optimal target 
refractions FDm and FPm for monofocal pseudophakia 
over an object range from Dz  to zP are given by 
Equations 1 and 2.  The optimal target refractions 
locate the minimum of the mean binocular error over 
the object range for distal DF  and proximal FP target 
refractions.  Figures 3 to 4 show the mean binocular 
error graphically for the object range from 6D −=z  
to  zP 33.0P −=z 0.33 m.  The surface is a long narrow 
valley with a minimum at the optimal refractions 

2700.0Dm −=F  D and 1513.1Pm −=F  D.  Because 

the curvature at the bottom of the valley in the DF   
direction is some 50 times the curvature in the PF  
direction it means that a small change in distal 
refraction from the optimum takes one up the sides 
of the valley much faster than does a small change 
in proximal refraction.  This suggests that errors in 
the distal refraction are considerably more important 
than errors in the proximal refraction.  Thus small 
deviations of the proximal refraction from the target 
refraction have limited impact on the mean binocular 
error while there may be a need for additional surgery 
where distal refractions are off target.  On the other 
hand, around the optimum, the mean binocular error 
is some 30 times more sensitive to the proximal 
limit zP of the axial range than to the distal limit 
zD.  Thus the choice of the proximal limit is more 
important than the choice of the distal limit.  It may be 
important, therefore, to tailor the proximal target for 
the individual patient.
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