
A p p l i c a t i o n  o f  s t a t i s t i c a l  c o n t r a s t s  t o  m e a n  
r e f r a c t i v e  s t a t e

Abstract  

Testing for differences between specific 
groups or combinations of groups is referred 
to as comparison or contrast testing. Statistical 
significance of comparisons can be assessed by 
first forming contrasts and then testing for their 
significance. A contrast essentially tests wheth-
er or not two means are significantly different, 
where each mean could be a weighted average 
of two or more means. 

Gillan investigated whether the instillation 
of a cycloplegic (Mydriacyl 1% (tropicamide)) 
into the right eye of a 30-year-old female sub-
ject would affect the variability of her distance 
refractive state as measured by an autorefractor.

The purpose of this paper is to introduce 
mutually orthogonal linear contrasts of sample 
data to optometric research. By constructing 
particular contrasts, mean refractive states are 
compared before instillation, before and after 
instillation, and after instillation. 

Keywords: Multiple comparisons, contrasts, 
hypothesis testing. 

Introduction

When measuring refractive state using an 
autorefractor, different types of refractive varia-
tion have been found. Repeated measurements 
of refractive state reveal variability of the refrac-

tion. Gillan1 considered refractive variability 
under cycloplegia in a 30-year-old female sub-
ject. He analysed the experimental data by 
means of multivariate statistical methods devel-
oped by Harris2 and used software developed by 
Harris and Malan. A shortfall of Gillan1 is that 
the null hypothesis and the alternate hypothesis 
for the various stages of the experiment were 
neither stated nor justified when he performed 
the different hypotheses tests on the sample 
data. Since he only performed the experimental 
procedure on a single subject, conclusions can 
only be made about the mean refractive state of 
that subject. However if the same experimental 
procedure was performed on the right eyes of 
two or more 30-year-old female subjects select-
ed at random from a population of 30-year-old 
females, then one could make conclusions about 
the mean refractive state of the population of 
right eyes of 30-year-old females using the sam-
ple data. Malan3 questioned statistical analysis 
of refractive variability with small samples.

Mutually orthogonal linear contrasts for 
comparing J multivariate means require J – 1 
such contrasts. Using the theory of mutually 
orthogonal linear contrasts4, Lemmer5 discussed 
only a single contrast as being an optimal way 
to ascertain whether the cycloplegic had a sig-
nificant effect. One queries the validity of this 
approach, as he neglected the mutually orthogo-
nal requirement. References 6-10   were also con-
sulted for discussion of contrasts and multiple 
comparisons.    
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This paper applies mutually orthogonal lin-
ear contrasts to sample data to investigate 
whether the instillation of a cycloplegic into the 
right eye of a 30-year-old female subject would 
affect the variability of her distance refrac-
tive state as measured by an autorefractor. 
Data modified from an experiment designed 
and carried out by Gillan1 are used. Details 
of the experimental procedure are available1, 
but are not considered necessary in so far as 
this paper is concerned.  

Hypotheses about contrasts 

 In order for any tests of hypotheses or rules 
of decisions to be good, they must be designed 
so as to minimize errors of decisions. This is not 
a simple matter since, for a given sample size, an 
attempt to decrease one type of error is accom-
panied in general by an increase in the other type 
of error. In practice one type of error may be 
more serious than the other, and so a compromise 
should be reached in favour of a limitation of 
the more serious error. The only way to reduce 
both types of error is to increase the sample size, 
which may or may not be possible.

Testing for differences between specific 
groups or combinations of groups is referred to 
as comparison or contrast testing. Statistical sig-
nificance testing of comparisons can be assessed 
by first forming contrasts and then testing for 
their significance. It is a good statistical practice 
to perform contrast analysis determined or stated 
a priori, rather than test all possible contrasts in 
search of significant effects. In univariate signifi-
cance tests, each contrast is tested separately for 
each dependent variable, whereas in multivariate 
significance tests, each contrast is tested simulta-
neously for all the dependent variables. Mutually 
orthogonal linear contrasts are applied to data 
as published by Gillan1. The raw data were not 
available and minor errors in Gillan’s tables were 
corrected (a negative variance in Gillan’s Table 2 
was corrected to its positive value. See Table 1 
and Table 2 modified from Gillan1). 

Univariate significance tests for the contrasts

A contrast among J population means μJ is a 
weighted sum 

c1 μ1 + c2 μ2 +…+ cJ μJ

where cj ≠ 0 for some j , and c1 + c2 +…+ cJ  = 
0.  This is also referred to as a linear contrast. 
Linear contrasts make comparisons amongst 
the J means μ1, μ2,…, μJ.  A contrast is denoted 
by ψ which may be subscripted if the experi-
menter considers more than one set of weights 
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Table 1: The mean refractive state for each set of data measured by Gillan1 
is indicated. Sample size is the same (n = 30) in each case. BM1: Data 
collected 30 minutes prior to instillation of Mydriacyl into the right eye of 
the subject, BM2: Data collected immediately prior to instillation, AM1: 
Data collected 15 minutes after instillation, AM2: Data collected 30 minutes 
after instillation and AM3: Data collected 60 minutes after instillation. All 
quantities have units D, except for axis which is measured in degrees.

Mean refractive state 
(conventional form)              

 Mean refractive state as vector h 

sph cyl              axis h1 h2 h3

BM1   –0.0377  –0.1407 x 157 –0.0582       –0.0702      –0.1578

BM2     0.0103  –0.1516 x 161 –0.0049       –0.0644     –0.1261

AM1   –0.0245  –0.1646 x 158 –0.0476       –0.0808     –0.1661

AM2   –0.0513  –0.1618 x 159 –0.0716       –0.0759     –0.1927

AM3   –0.0534 –0.1768 x 162 –0.0693       –0.0715     –0.2143

Table 2:  Data modified from Gillan1. The variance-covariance matrix 
for vector h is shown for each data set collected. BM1: Data collected 30 
minutes prior to instillation of Mydriacyl into the right eye of the subject, 
BM2: Data collected just prior to instillation, AM1: Data collected 15 
minutes post instillation, AM2: Data collected 30 minutes post instillation 
and AM3: Data collected 60 minutes post instillation. All quantities have 
units D2.

BM1   0.00196     0.00045      0.00082   
  0.00045     0.00078      0.00003
  0.00082     0.00003      0.00129

BM2   0.00213   –0.00042     0.00129   
–0.00042     0.00094   –0.00017
  0.00129   –0.00017     0.00348

AM1   0.00191   –0.00100     0.00180   
 –0.00100    0.00117   –0.00092
  0.00180   –0.00092    0.00328

AM2   0.00170   –0.00118     0.00175   
–0.00118     0.00191    –0.00113
  0.00175   –0.00113     0.00293

AM3   0.00208   –0.00037     0.00201   
–0.00037     0.00103   –0.00074
  0.00201   –0.00074     0.00419



c1, c2,…, cJ. Thus, some of the contrasts we 
might define for five populations are:

ψ1 = (0) μ1+ (2) μ2 + (1) μ3 + (0) μ4 + (–3) μ5

ψ2 = (1) μ1+ (2) μ2 + (3) μ3 + (6) μ4 + (–12) μ5

ψ3 = (0) μ1+ (0) μ2 + (0) μ3 + (1) μ4 + (–1) μ5

ψ4 = (1/2) μ1+ (1/2) μ2 + (0) μ3 + (0) μ4 + (–1) μ5

The hypothesis ψ3 = 0 is equivalent to the 
hypothesis that μ4 – μ5 = 0, that is μ4 = μ5. 
Likewise, ψ4 can be rewritten ψ4 = (μ1+ μ2)/2 
– μ5, so that the hypothesis ψ4 = 0 is equivalent 
to the hypothesis that (μ1+ μ2)/2 – μ5 = 0, that 
is, the hypothesis that the average of μ1 and μ2 
is equal to μ5.

In general, any such comparison among J 
population means can therefore be formulated 
in terms of a test hypothesis about a contrast:

H0 :  c1 μ1 + c2 μ2 +…+ cJ μJ = 0

or

H0 : ψ = 0.

The alternative hypothesis is

H1 : ψ ≠ 0

 Let A = a1 μ1 + a2 μ2 +…+ aJ μJ  and 
B = b1 μ1 + b2 μ2 +…+ bJ μJ be two linear con-
trasts of the means μ1, μ2,…, μJ. Then A and B 
are called orthogonal linear contrasts if in addi-
tion to:

a1 + a2 +…+ aJ = 0 and b1 + b2 +…+ bJ = 0, 

it is also true that:

a1 b1 + a2 b2 + a3 b3 + … + aJ bJ = 0.

None of the contrasts ψ1 to ψ4 defined above 
for the five populations is orthogonal.Orthogonal 
linear contrasts make independent comparisons 
amongst the J means  μ1, μ2,…, μJ.

 Let A = a1 μ1 + a2 μ2 +…+ aJ μJ , 
B = b1 μ1 + b2 μ2 +…+ bJ μJ , and 
L = l1 μ1 + l2 μ2 +…+ lJ μJ

be a set of linear contrasts of the means 
μ1, μ2,…, μJ. Then the set is called a set of mutu-
ally orthogonal linear contrasts if each linear 
contrast in the set is orthogonal to any other lin-
ear contrast in the set. The maximum number of 
linear contrasts in a set of mutually orthogonal 
linear contrasts of the means 
μ1, μ2,…, μJ is J – 1. The number of degrees of 
freedom for comparing the means

μ1, μ2,…, μJ is J – 1.

Let L1, L2, …, LJ – 1 denote J – 1 mutually 
orthogonal linear contrasts for comparing the J 
means μ1, μ2,…, μJ.   Then the sum of squares 
for comparing the J means based on J degrees 
of freedom, SSBetween, satisfies:

SSBetween  =  SSL1
 + 

 
SSL1 

+ ... +  SSLJ - 1.
  
Defining a set of mutually orthogonal 

linear contrasts for comparing the J means 
μ1, μ2,…, μJ allows the researcher to break up 
the sum of squares for comparing the J means, 
SSBetween, and perform individual tests of each 
linear contrast.

Suppose c1 + c2 +…+ cJ ≠ 0, and we want to 
use the theory of linear contrasts for the test-
ing procedure. Suppose that the coefficients c1 
and c2 are zero, but that c3, c4 ,.., cJ are nonzero. 
Compute the mean of those coefficients that are 

nonzero, that is calculate c ̄   = c3 + c4 +...+ cJ

                                              J – 2       
 .

 
Then (c3 – c ̄  ) + (c4 – c ̄  ) + ... + (cJ - c ̄  ) = 0,
that is, we have a linear contrast with
ĉ3 = c3 – c ̄  , ĉ4 = c4 – c ̄  , ..., ĉJ = cJ – c ̄    as the 
new  coefficients. Of course one must also satisfy 
the requirement that the contrasts be mutually 
orthogonal. 

Multivariate significance tests for contrasts

Multivariate contrasts are used to test simul-
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taneously for the effects of all the dependent 
variables. A multivariate contrast is given by

Ψi = ci1 μ1 + ci2 μ2 +…+ ciJ μJ
 

where μJ  is a vector of means for the J-th group 
and Ψi is the i-th contrast vector.
The null and alternate hypotheses for the multi-
variate significance test for the i-th contrast are

H0 : Ψi = 0  and  H1 : Ψi ≠ 0.

According to Sharma4 the test statistic for H0 is 
given by

F = T2 (dfe – p + 1) / ( dfe .p)                            (1)

where T2 =                  Ψi
|

  Sw
-1 Ψi 

with nk the number of observations in each 
group k, G the number of groups, p the dimen-
sion of the observations, Sw the pooled within-
group covariance matrix with dfe degrees of 
freedom. The F-statistic has an F-distribution 
with p and dfe – p + 1 degrees of freedom.

Example
Mean refractive state – testing the data from 

Table 1.
Let μ1 be the mean refractive state of the 

right eye of a 30-year-old female subject  30 
minutes before the instillation of  Mydriacyl, 
μ2 the mean refractive state of the eye just prior 
to instillation, μ3, μ4 and μ5 the mean refractive 
state of the eye 15 minutes, 30 minutes and 60 
minutes respectively post instillation.

Multivariate statistical methods developed 
by Harris2, as well as mutually orthogonal linear 
contrasts discussed by Sharma4 are implement-
ed and compared where possible. Hypotheses 
tests are performed at a 5% and at a 1% level 
of significance. All the numerical computations 
are performed using Matlab. 

(i) Using the method of Harris2, two possible 
starting reference values namely  μ1 and μ2 are 
available for performing hypotheses tests. In A1 
to A4, μ2 is used as reference value, (same as 

Gillan1), while in B1 to B4 , μ1 is used as refer-
ence value. Note that the tests A1 and B1 are 
identical.  

Gillan1 only states results using μ2 as refer-
ence value. However, no values are displayed. 
Lemmer5 questions what would have resulted 
had μ1 been used as reference value. The results 
obtained with both reference values μ1 and μ2 
are shown in Table 3.

Lemmer5 states that it is not good statisti-
cal practice to test each of the after treatments 
in turn against the second set of observations 
because the Type I error is thereby enlarged. If 
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( ∑ cik2)-1

         k=1
      

n
k

G

A1 H0: μ2 = μ1 A2 H0: μ2 = μ3

H1: μ2  ≠ μ1 H1: μ2 ≠ μ3

A3 H0: μ2 = μ4  A4 H0: μ2 = μ5

H1: μ2 ≠ μ4 H1: μ2   ≠ μ5

B1 H0: μ1 = μ2 B2 H0: μ1 = μ3 
H1: μ1 ≠  μ2 H1: μ1  ≠ μ3                

B3 H0: μ1 = μ4 B4 H0: μ1 = μ5

H1: μ1 ≠  μ4 H1: μ1 ≠ μ5

Table 3: Test statistics for hypotheses tests B1 to B4 on mean 

refractive state using μ1 as reference value, as well as test 

statistics for hypotheses tests A1 to A4 on mean refractive state 

using μ2 as reference value (same as Gillan1). The respective null 

hypotheses (H0) are that the mean refractive states are equal. 

Critical values are F0.05, 3, 56 = 2.776, and F0.01, 3, 56 = 4.166. 

Note that the tests B1 and A1 are identical.

Hypothesis Test Test statistic using equation 22 2, with 
decision on H0 denoted by * and **

B1 and A1 6.9286 * and **

B2 1.8848

B3 3.9248 *

B4 7.6609* and **

A2 10.3910* and **

A3 18.5603 * and **
A4 14.6503 * and **

* Reject H0 at 5% level of significance. 
** Reject H0 at 1% level of significance.
     No asterisks: Retain  H0 at the appropriate levels of significance.



all tests are conducted at significance level α, 
the overall significance level is greater than α. 
Suppose that the four A or B tests given above 
are independent of one another. If we let  α = 
0.05 for each test, the probability of avoiding 
a Type I error on each test is  1 – 0.05 = 0.95. 
By the multiplication theory for independent 
events, the probability of avoiding a Type I 
error on all four tests is therefore 
(0.95) (0.95) (0.95) (0.95) = (0.95)4 ≈ 0.8145, 
which means that the probability of making 
a Type I error on at least one of the tests is 
approximately 1 – 0.8145 = 0.1855. That is, 
our overall α is not 0.05, but about 0.18. In 
general, if K independent tests are conducted 
at level of significance α, the probability of 
at least one Type I error is 1 – (1 – α)K. The 
assumption was made that the four tests in A 
or B above were independent. In the general 
case of J samples, the largest possible number 

of independent differences is J – 1. For three 
or more samples, the number of possible pairs 
J(J – 1)/2 is always greater than J – 1, so if 
one tests every difference, some tests will 
necessarily be independent. When all K tests 
are not independent, the overall probability of 
a Type I error may be impossible to calculate, 
but if all tests are conducted at significance 
level α, the overall probability can be as great 
as Kα, assuming, of course, that Kα does not 
exceed 1. One way to resolve the problem is 
to test every difference at a significance level 
of α/K. This ensures that the overall probabil-
ity of a Type I error is no greater than α, but 
the dependency among tests makes multiple 
results difficult to interpret. A strategy that 
circumvents these difficulties was developed 
by Fisher in the 1920’s and hinges on the rea-
soning that differences among J population 
means  μ1, μ2, ... , μJ should be reflected in 
variability among the means of samples drawn 
from these populations xˉ1, xˉ2, ... , xˉJ.

(ii) A choice of 4 mutually orthogonal lin-
ear contrasts for the 5 means μ1, μ2, μ3, μ4, 
μ5 is displayed in Table 4, with correspond-
ing null hypotheses in Table 4a. In Table 5 a 
comparison is made between results obtained 
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Table 4:  A choice of 4 mutually orthogonal linear contrasts for the 5 means  μ1, μ2, μ3, μ4, μ5.

Contrast coefficients ci → c1 c2 c3 c4 c5 Sum across rows

Contrast 1 (C1) 1 –1 0 0 0 0

Contrast 2 (C2) 1/2 1/2 –1/3 –1/3 –1/3 0

Contrast 3 (C3) 0 0 1 –1 0 0

Contrast 4 (C4) 0 0 1/2 1/2 –1 0

Product of ci’s in contrast 
columns Sum across rows

C1 & C2 1/2 – 1/2 0 0 0 0

C1 & C3 0 0 0 0 0 0

C1 & C4 0 0 0 0 0 0

C2 & C3 0 0 –1/3 1/3 0 0

C2 & C4 0 0 –1/6 –1/6 1/3 0

C3 & C4 0 0 1/2 –1/2 0 0

Table 4a: Mutually orthogonal linear contrasts and corresponding 

null hypotheses.

Contrast Null hypotheses H0
Contrast 1 (C1) μ1 – μ2 = 0

Contrast 2 (C2) (μ1+ μ2)/2 – (μ3 + μ4 + μ5)/3 = 0

Contrast 3 (C3) μ3 – μ4 = 0

Contrast 4 (C4) (μ3+ μ4)/2 – μ5 = 0



using the method of mutually orthogonal lin-
ear contrasts4 and the method of Harris2. 

Discussion
 

A number of interesting and unexpected 
results emerged from the respective  statistical 
hypotheses tests. In the context of this paper, 
the term “significant difference” means the drug 
had an effect, while the term “no significant dif-
ference” means the drug had no effect.

For (i) in the example, the comparison of μ1 

and μ2 shows a significant difference at a 5% 
and at a 1% level of significance. This result is 
extremely interesting. What could have caused 
this difference since Mydriacyl had not yet been 
instilled into the subject’s right eye? Influencing 
factors could be the surrounding environment 
in which the experiment was conducted (air-
conditioning of the room, lighting), changes in 
the tear layer, eye-lid movement during blinking, 
concentration, attention, other non-visual sen-
sory inputs and motivation. Various factors such 
as disease processes, pharmacological agents and 
inner body changes (such as enzymatic or hor-
monal processes) can also affect refractive state.  

At a 5% and at a 1% level of significance, 
hypotheses tests A2, A3, A4 and B4 show 
a significant difference. Hypothesis test B3 

shows a significant difference at a 5% level of 
significance, but no significant difference at a 
1% level of significance. Test B2 shows no sig-
nificant difference at both levels of significance. 
This is a rather strange result.

For (ii) in the example, contrasts C1, C2 and 
C4 show a significant difference at a 5% level 
of significance, but at a 1% level of significance 
(a tighter restriction), only in cases C1 and C2 
are there significant differences. Contrast C1 
confirms the results obtained for A1 and B1. 
Contrast C2 confirms the results obtained by 
Lemmer5. Contrast C4 shows no significant 
difference at a 1% level of significance, while 
contrast C3 shows no significant difference at 
both levels of significance. Analyse this case of 
non-effect of the drug for the contrast C3 more 
carefully. Many external factors could have 
affected these results. Maybe the subject was 
fatigued and thirsty, or there was a drop in blood 
pressure or glucose level at this point in time 
during the experiment. The result for contrast C4 
at a 1% level of significance is acceptable since 
the average of the mean refractive state measured 
at 15 minutes and 30 minutes respectively post 
instillation is being compared with the mean 
refractive state 60 minutes post instillation when 
we expect the drug to have virtually worn off. 

For the comparison of multivariate means 
using the method of Harris2 in (ii), there is 
no significant difference at both levels of sig-
nificance between μ3 and μ4, thus confirming 
the result obtained using contrast C3. No sig-
nificant difference is observed at both levels 
of significance between the average of μ3 and 
μ4 with μ5. However with contrast C4 there is 
no significant difference only at a 1% level of 
significance. When comparing the average of 
μ1 and μ2 with the average of μ3, μ4 and μ5, the 
results using Harris2 compare well with those of 
contrast C2  at both levels of significance.

Looking carefully at all of the above results, 
one may ask whether Mydriacyl is in fact an effec-
tive cycloplegic for paralysis of the ciliary muscle 
for the duration of this experiment.  

It is interesting to note that, when comparing 
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Table 5: Test statistics for hypotheses tests on mean refractive 

state. The respective null hypotheses (H0) are those presented 

Table 4a. Critical values are: (for mutually orthogonal linear 

contrasts: F0.05, 3, 143 = 2.673 and F0.01, 3, 143 = 3.918) and 

(for comparison of multivariate means: F0.05, 3, 56 = 2.776, and 

F0.01, 3, 56 = 4.166).

Test statistic using equation 1, 

with  decision on H0

denoted by * and ** 

Test statistic using equation  22 2 , with 

decision on H0  

denoted by * and **

9.0939 * and ** 6.9286 * and **

14.1924 * and ** 5.7275 * and **

1.6363 2.0664

 3.0058 * 1.9704

* Reject  H0 at 5% level of significance. 

** Reject H0 at 1% level of significance.

No asterisks: Retain H0 at the appropriate levels of significance. 



the results obtained using mutually orthogonal 
linear contrasts with those obtained using Harris2, 
the value of the computed test statistic is often 
larger in the former case, thus making the chance 
of rejecting the null hypothesis more probable.

It is important to transform the comparisons 
of interest into contrasts. It is also important that 
the researcher understand the nature of contrasts 
when he or she interprets the contrast coefficients. 
Once comparisons are transformed into contrasts, 
the remaining procedure for testing their effects is 
relatively straightforward.

The introduction and application of mutu-
ally orthogonal linear contrasts to sample data in 
optometric research has been achieved in a clear, 
easy and understandable way. This very important 
concept should always be applied by the optom-
etrist involved in such research. The specific set of 
contrasts that the researcher tests, depends on the 
questions that need to be addressed by the study.  
It is important to note that univariate contrasts 
should only be interpreted if the corresponding 
multivariate contrast is significant. 

Conclusions
 

A sample size of 30 measurements per sam-
ple is possibly too small. A larger sample of 30-
year-old female subjects with a variety of spec-
tacle prescriptions should be subjected to the 
experimental procedure to draw more concrete 
conclusions. Possibly a control group should 
also be included. Subjects can be their own con-
trols as in Gillan’s approach.  In addition one 
should also perform the experimental procedure 
on an equivalent sample of 30-year-old males 
including a control group. The experimental 
trial should also be performed on a combined 
group of 30-year-old males and females with a 
control group. 

A study using Mydriacyl with autorefraction 
at near rather than at distance would also be 
useful to obtain a clearer idea of its cyclople-
gic efficacy. The entire experiment could be 
repeated with different cycloplegics, and the 
results compared to make the study more com-
prehensive.
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