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Abstract

This paper introduces the differential geom-
etry of surfaces in Euclidean 3-space. The first 
and second fundamental forms of a surface are 
defined.  The first fundamental form provides 
a metric for calculations of length and area on 
the surface. The second fundamental form deter-
mines surface curvature and, hence, concepts of 
importance in optometry such as surface power 
and sagitta. The principal curvatures at a point 
on a surface are obtained as solutions of a qua-
dratic equation. The torus is used to illustrate the 
methods.

Much of the life of optometry centres on the 
concepts of sphere and cylinder; toric surfaces 
make their appearance here and there. That is for 
historical reasons. Now modern technology is 
bringing with it all sorts of new surface shapes. 
How do we adapt to them? How does our under-
standing of power hold up when it is based on 
spheres and cylinders?

A previous paper1 introduced the differential 
geometry of space curves and outlined the rel-
evance of concepts to issues of interest in optom-
etry. The goal of this paper is to do the same but 
for surfaces in space. Clearly surfaces are of 
paramount importance in optometry; they are the 
location of much of the process of refraction in 
spectacle and other lenses and in the eye itself.

Whereas we were able before1 to outline most 
of the theory of curves we cannot really hope to 
do the same for surfaces. The theory of surfaces 
is a good deal more complicated. All we shall 
attempt to do here is cover introductory mate-

rial, essentially that concerning what are known 
as the first and second fundamental forms of a 
surface. And we shall do so less formally. Via the 
first fundamental form we are able to calculate 
distances and areas in the surface; via the sec-
ond fundamental form we can determine surface 
curvature and, hence, quantities of optometric 
interest such as principal powers and sagitta. 
The reader who wishes to go further in the study 
of surfaces should consult the literature, includ-
ing perhaps the two most popular texts2, 3 on the 
subject.

We begin with the vector function of two vari-
ables and its derivatives. Differential geometry 
makes use of a characteristic symbolism which 
many may find intimidating. However the sym-
bolism greatly reduces the size and number of 
equations and introduces a transparency without 
which the subject would be well-nigh impos-
sible. In particular we shall take advantage of 
Einstein’s summation convention. We derive the 
first fundamental form and show how it is used to 
calculate lengths and areas in the surface. From 
the curvature of a curve on the surface we define 
the concept of curvature of the surface itself and 
obtain the second fundamental form. From the 
second fundamental form we obtain the princi-
pal curvatures at a point on a surface. We define 
mean and Gaussian curvature. Principal curva-
tures lead naturally to a discussion of principal 
powers. The torus is a surface of considerable 
importance in astigmatic systems; it is examined 
in detail in the Appendix as an illustration of the 
general methods. More particularly the Appendix 
shows how to calculate the surface area and the 
principal curvatures at points on the surface of 
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the torus.  Despite what for many is the menacing 
appearance of the mathematics the calculations 
are relatively straightforward.

Vector Function of Two Scalar Variables

Instead of the vector function of one variable 
that generates a curve (equation 8 of the previous 
paper1) we now have a vector function

x = x(u,v)   (u,v) є D             (1)

of two variables that generates a surface.  The 
function is defined over a domain D. One can 
think of the function as containing three scalar 
functions of two variables:

x =
 (   ) (u,v) є D.            (2)

Figure 1 is a graphical representation of the sur-
face. The surface is shown by means of two fami-
lies of curves, the u-parameter curves along which 
v is constant (one of them is marked v in Figure 1) 
and the v-parameter curves along which u is con-
stant.  In effect the function is a rule for bending 
and generally distorting a flat patch (the domain D) 
into some shape in three dimensions. x is the posi-
tion vector of a point on the surface.  We shall be 
interested in the surface near point x.

Derivatives, Tangents and Notation

What is true of curves in general1 is true of 
the u- and v-parameter curves in particular.

  is a vector tangent to the u-parameter curve 
at the point with position vector x and       a 
vector tangent to the v-parameter curve there 
(Figure 2).

A modified notation allows a more effi-
cient and compact symbolism.  Variables u 
and v are rewritten u1  and  u2 respectively.  
Equation 1 then becomes

x = x(u1, u2)  (u1, u2) є D                      (3)

and the derivatives become       and       .
We write uα  to represent either variable  u1 

or  u2 . The function is abbreviated as 
x = x(uα)                         (4)
and either derivative by       . The derivatives                                
    are abbreviated still further as x,α which 
means either x,1  or x,2.

The two tangent vectors  x,1 and x,2 define 
the tangent plane of the surface at the point x 
(Figure 3). A point in the tangent plane has posi-
tion vector
T = x + hx,1 + jx,2                       (5)
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Figure 1 Graphical representation of a vector function of two 
variables (equation 1). The function generates a surface in space.  
Along the curve labelled v the parameter v is fixed and parameter 
u varies; it is a u-parameter curve. Similarly along the curve 
labelled u parameter u is fixed; it is a v-parameter curve. The 
surface has two families of curves, the u- and the v-parameter 
curves.  x is the position vector of the point on the surface with 
parameters u and v.
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Figure 2  The derivatives         and        are vectors tangent to 
the u- and v-parameter curves of the surface at the point with 
position vector x.
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where h and j are real numbers.  The vector

N = x,1 x x,2              (6)

is normal to the surface and

               (7)

is a unit normal vector.  If  N ≠ o everywhere the 
surface is called regular.

The differential of x is

dx = x,1du1 + x,2du2.                        (8)

One can think of dx  as the displacement in the 
surface associated with small increments du1  
and du2 in parameters u1 and u2 (Figure 4).

Einstein’s Summation Convention

This is a convenient place to introduce what 
is known as Einsteins’s summation convention.  
Equation 8 can be written as

dx = ∑x,αduα.              (9)

Making use of Einstein’s summation conven-
tion one writes

dx = x,αduα                       (10)

instead. Summation of an expression is under-
stood over a repeated lower-case Greek letter.  
Changing the letter makes no difference, and 
so the two ostensibly different expressions   
dx = x,αduα and dx = x,ßduß are in fact identical. 
The repeated Greek letter is referred to as a 
dummy index. That is in contrast to an unre-
peated Greek letter, as in uγ for example, which 
is called a free index and over which summation 
is not understood.

Expressions can contain dummy and free 
indices and more than one of each. gγδΓδαγ, for 
example, contains two dummy indices, γ and 
δ, and one free index, α. gγδΓδαγ actually means 
two things, one for each value of the free index 
α. In other words gγδΓδαγ implies both gγδΓδ1γ  and 
gγδΓδ2γ.  Furthermore summation over both γ and 
δ is understood in both. Thus

gγδΓδ1γ = ∑ ∑ gγδΓδ1γ
 

or

gγδΓδ1γ = g11Γ111 + g12Γ211+ g21Γ112 + g22Γ212.         (11)

Similarly

gγδΓδ2γ = g11Γ121 + g12Γ221+ g21Γ122 + g22Γ222.         (12)

Thus gγδΓδαγ is a compact way of writing the right-
hand sides of both equations 11 and 12 simulta-
neously. (We shall meet g below. Γ refers to what 
are called the Christoffel symbols, objects that 
are beyond the scope of this paper.)

The First Fundamental Form of a Surface

The squared length of the differential vector 
dx  is called the first fundamental form of the 
surface.  It is given by

        
(ds)2 =dx • dx.                (13)
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N ̂  =  x,1 x x,2

       |x,1 x x,2|

Figure 3  A surface with vectors  x,1 and x,2 tangent, at point 
x, to the parameter curves of the surface.  The tangent vectors 
define the surface’s tangent plane (shown by means of a dashed 
ellipse) and a normal vector N (equation 6).

Figure 4  The differential vector  dx as a linear combination 
(equation 8).
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Substituting from equation 8 we obtain

(ds)2 = (x,1du1 + x,2du2) • (x,1du1 + x,2du2)
 

or

(ds)2 = x,1 • x,1(du1)2 + 2x,1 • x,2du1du2 
       + x,2 • x,2(du2)2.              (14)

We define

gαß = x,α • x,ß             (15)

and then rewrite equation 14 as

(ds)2 = g11(du1)2 + 2g12du1du2 + g22(du2)2.    (16)

In terms of matrices this can be written as

(ds)2 = (du1  du2)(g11  g12  )(du1 

)      g21  g22      du2          (17)

in which

g = (g11  g12 )           g21  g22                            (18)

is a symmetric matrix. The gαß are called the 
coefficients of the first fundamental form of the 
surface and g the matrix of the first fundamen-
tal form of the surface.  One can make use of 
Einstein’s summation convention and write the 
first fundamental form (equation 16) as

(ds)2 = gαßduα duß.   (19)

The matrix of the first fundamental form of a 
torus is calculated in the Appendix.

Length of a Curve in a Surface

Consider now a surface defined by x = x(u1, 
u2).  Suppose we make u1 and u2 both functions 
of a variable t, that is,

 u1 = u1 (t) and u2 = u2 (t),                                (20)

on an interval I.  We then have

x = x(u1(t), u2 (t))
 

which is a new vector function but now of a 
single variable (t):

       
x = x(t).             (21)

It represents a curve on the surface (Figure 5).
The first fundamental form of a surface 

allows us to calculate the lengths  of curves 
on it.  The length is given by integrating 
elements of length |ds|, that is, √gαßduα duß

(equat ion  19) ,  a long  the  curve  for  an  
appropr ia te  in te rva l  of  the  var iab le  t .  
The length of the curve is given by

        
S = ∫ √gαß                  dt.

                
     dt   dt

 

Area of a Surface

Figure 6 shows a closed curve on a surface.  
The first fundamental form allows one to cal-
culate the area of the surface enclosed by the 
curve.  The formula is

A = ∫∫√det g du1du2

  ∑                                                        
(23)

where g is the matrix of the first fundamental 
form (equation 18).

The surface area of a torus is calculated in 
the Appendix.

Normal Curvature of a Curve on a Surface

At point x a curve has curvature vector  x
ֵ
  (Figure 

7). We can write the curvature vector as a linear 
combination of the three vectors  N ̂ , x,1 and x,2:

x
ֵ
  = kN^    + λx,1 + μx,2.
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Figure 5  A curve (equation 21) on a surface.



It follows that

k = x
ֵ
   • N^                        (24)

which is what we call the normal curvature of 
the curve at x in the surface.

Curvature of a Surface

We obtain an expression for the curvature 
vector x

ֵ
  from equation 8.  The first derivative 

with respect to s is

x�   = x,1uׂ1 + x,2uׂ 2.

Differentiation gives the second derivative:

x
ֵ
     = x,1ü1 + x�  ,1uׂ1 +  x  ,2ü2 +  x�  ,2uׂ2  

 

where by xׂ,1 we mean             .  Substituting into 
equation 24 gives

k = x�   ,1• N
^   uׂ1 + x�  ,2 • N

^   uׂ2.            (25)

Because x = x(u1, u2) it follows that

x,1 = x,1(u1, u2)
 
whose differential is

dx,1 =       du1 +        du2 
 
or

dx,1 = x,11du1 + x,12du2.
 
Hence

x�  ,1 = x,11uׂ1 + x,12uׂ2

and similarly for x�  ,2.  Together the two equations 
can be written as one:

x�  ,α = x,αßuׂß.

Substituting into equation 25 we obtain

k = x,11 • N
^  (uׂ1)2 + 2x,12 • N

^  uׂ1uׂ2 + x,22  • N
^  (uׂ2)2

where we have made use of the fact that x,12 = x,21.  
We write this equation as
        
k = b11(uׂ1)2  + 2b12uׂ1uׂ2  + b22(uׂ2)2                  (26)

where

bαß = x,αß • N
^  .             (27)

Using the summation convention we can write 
equation 26 as

k =  bαßuׂ αuׂ ß
 
or, in terms of differentials, the normal curva-
ture of the curve in the surface through point 
x is

k =  bαßduαduß/(ds)2.            (28)
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Figure 6  A closed curve on a surface.  The portion of the sur-
face enclosed by the curve is denoted . The area of that portion 
is given by equation 23.

Figure 7  The curvature vector x
ֵ
   at the point x of the curve Γ 

.  The normal curvature of the surface at x in the direction of  Γ 
is given by equation 24.

d   ∂x
ds  ∂u1

∂x,1

∂u1
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∂u2



Coefficients bαß are properties of the surface.  
The differentials in equation 28 represent the 
direction of the curve in the surface at x. It fol-
lows that all curves in the surface that have the 
same direction at x have the same normal curva-
ture. It also follows that k can be regarded as the 
curvature of the surface in the direction defined 
by the differentials.

The Second Fundamental Form of a Surface

The expression

k(ds)2 = bαßduαduß            (29)

is called the second fundamental form of the 
surface.  The matrix

b = ( b11   b12 )       b21   b22             (30)

is the matrix of the second fundamental form 
of the surface.  It is calculated for a torus in the 
Appendix.

Surface Curvature and Power

Matrix b defines the shape of the surface in 
the neighbourhood of the point x.  In fact one 
may think of it as a curvature matrix for the 
surface. If b is null then the surface there is pla-
nar. Otherwise the surface is curved at the point. 
Points on a surface are classified into types 
depending on the determinant of b. If  detb > 0 
then x is called an elliptic point; if detb = 0 (but 
b ≠ O) then it is a parabolic point; if detb < 0  
then it is a hyperbolic point.  In optometric 
terms the surface is described as mixed in the 
neighbourhood of point x if x is hyperbolic, 
unmixed if x is elliptic and cylindrical if x is 
parabolic.  A torus has points of all three types.  
One can think of the inner tube for the wheel of 
a car.  The elliptic points are those on the tube 
that would touch the ground when it rolls; the 
parabolic points are those that would touch the 
ground when the tube lies sideways; the hyper-
bolic points are those that are adjacent to the 
rim of the wheel.

If the surface separates two transparent media 
then the dioptric power of the surface in the 
neighbourhood of point x takes the form

F = b∆n
 
where F is the dioptric power matrix. ∆n is the 
difference in the indices of refraction across the 
surface taken in the appropriate order.

Sagitta

It turns out that, for points near x, the second 
fundamental form (equation 29) is twice the 
perpendicular distance between the surface and 
the tangent plane (Figure 3). In optometric 
terms this is called the sagitta of the surface.  
More specifically we can write the sagitta as

z = 1 bαßduαduß.                      (31)
      

2
            

This would be an approximate expression for 
the sagitta.  An exact expression for sagitta is 
given by

z = (x – T) • N^  .

Principal Curvatures and Principal Powers

Equation 28 gives the curvature of the sur-
face at x in the direction defined by the differ-
entials.  The curvature k usually depends on the 
direction, being a maximum k+ in one direction 
and a minimum k–  in another. k+ and k–  are 
called the principal curvatures of the surface at 
x and the directions in the surface at x are the 
corresponding principal directions.

Finding the principal curvatures and direc-
tions is an eigenvalue problem.  We give no 
details here except to say that the principal 
curvatures turn out to be the solutions to the 
quadratic equation

k2 – k
 g11b22 + g22b11 – 2g12b12 

+
 b11b22 – b       

= 0                 g11g22 – g                       g11g22 – g    
                                                               (32)

The principal curvatures are calculated for a 
torus in the Appendix.

The mean curvature is defined as 
µ = 1(k+ +

 k–)             (33)
      

2

and the Gaussian curvature

K = k+k– .                     (34)
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The principal powers are related to the prin-
cipal curvatures by familiar expressions of the 
form

F± = k±∆n.

From equation 33 we see that the nearest equiv-
alent sphere is related to the mean curvature by
 
FI = μ∆n.

Concluding Remarks

This is as far as we shall go in our study of 
curves and surfaces.  The reader who would like 
to go further can turn to the literature2, 3.

As we have seen curves are generated by 
vector functions of a single variable; they have 
curvature and torsion that in general vary with 
position along them.  Surfaces are generated by 
vector functions of two variables.  Distance and 
area in the surface can be determined by the first 
fundamental form of the surface; the shape of a 
surface, including its curvature in particular, is 
determined by the second fundamental form.

Spherical and cylindrical surfaces, and the 
optometric concepts that depend on them, are 
going increasingly to be out of place in a 
modern optometry of aspheric, ellipsoidal and 
varifocal surfaces. Our educational programs, in 
particular, are still founded in spherocylindrical 
terms and do not really adequately prepare stu-
dents for that modern optometry.  Differential 
geometry is the key to an understanding of 
surface shape.  Typically, though, it is presented 
at a third-year level in applied mathematics 
courses at university which makes it unrealistic 
to expect it to be given a slot in the curriculum 
in the foreseeable future.  But there is a need, I 
believe, for some optometric academics to gain 
expertise in the subject and explore ways of 
channelling its concepts into the profession.
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 Appendix

Consider the parametrization

x =((q + psinφ)cosθ )       (q + psinφ)sinθ     θ є [0, 2�),  φ є [0, 2π)
             pcosφ

with q > p > 0. We illustrate the methods by 
determining the matrix of the first fundamental 
form and, hence, the surface area of the surface.  
We then determine the matrix of the second 
fundamental form and, hence, the principal 
curvatures.

The reader is encouraged first to check that 
the surface is that of a torus, to interpret the fixed 
quantities p and q and the variable quantities θ 
and φ, and to work out how the torus is lying 
relative to the set of orthogonal axes. This can 
be done by first choosing two fixed numbers for 
p and q (say 1 and 2) and then working out x for 
a few key values of θ and φ in the domain.

The two first derivatives are

x,  =
 (– (q + psinφ)cosθ  ) 

  
 θ
       (q + psinφ)cosθ

                      0
 

and

x,φ = (pcos φ cosθ ) 
.          pcos φsinθ

        – psinφ

The coefficients of the first fundamental form 
are then obtained from equation 15. For example

gθθ = x,θ • x,θ = (q + psinφ)2.

The result is the matrix of the first fundamental 
form

 
g = ((q + psinφ)2      0 ).
             0             p2

2.

3.



Hence

detg = p2(q + psinφ)2.

The area A of the torus is given by equation 22:
 

A= ∫
2π

 ∫
2π

p(q + sinφ)dθdφ.

=  ∫
2π

 (q + sinφ)2πdφ

= 4π2pq.

For the matrix of the second fundamental 
form we first need a normal vector (equation 6):

 
N = x,θ ×  x,φ

 

     =  (– (q + psinφ) sinθ    pcosφ + cosθ   i )               q + psinφ) sinθ    pcosφ + cosθ   j
                   0                    –psinφ            k

 
 = –p(q + sinφ) (sinφcosθ )                         sinφsinθ   
          cosφ         

.

Its magnitude is

|N| = p(q + sinφ).

Hence

N
 ̂  = –

 (sinφcosθ)            sinφsinθ
  cosφ

(equation 7) is a unit normal. The second 
derivatives are

        (– (q + psinφ)cosθ)x,θθ =  – (q + psinφ)sinθ 
                           0         

,

 

         

 (– pcosφsinθ)x,θφ =     pcosφsinθ
        0   
  
and

       

 (–psinφcosθ)x,φφ =  –psinφsinθ   .
       0   

The coefficients of the second fundamental 
form of the surface are obtained using equation 
27.  For example bθθ = x,θθ • N

^    Equation 30 gives 
the matrix of the second fundamental form of 
the torus:

      ((q +psinφ)sinφ    0 )b =         0                  p   .

From equation 33 we obtain a quadratic equa-
tion for the principal curvatures

k2 – k
  q + 2psinφ   

+
       sinφ        

 = 0.
  

 

     
  p(q + psinφ)      p(q + psinφ)      

The solutions turn out to be

k± =
 q + 2psinφ ± q ,

        2p(q + psinφ)

that is, the principal curvatures at a point on the 
surface are

k+ =
 1  and k– =

     sinφ
       p                q + psinφ

.

Notice that k+ is constant over the surface while 
k– is positive, zero or negative according to the 
value of the parameter φ .
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