
The South African Optometrist − December 2005

Abstract

The problem of how to define an average 
eye leads to the question of what eigenvalues 
are possible for ray transferences. This paper 
examines the set of possible eigenvalues in the 
simplest possible case, that of optical systems 
consisting of elements that are stigmatic and 
centred on a common axis.

Keywords: Transference, Gaussian systems, 
eigenvalues, spherical systems, stigmatic sys-
tems, symplecticity

Wherever matrices find application the 
eigenstructure of the matrices usually turns out 
to be important. The eigenstructure is some-
times more closely related to the intuitive or 
traditional understanding of phenomena that 
for purposes of quantitative representation and 
analysis are better represented as the matrices 
themselves.  Perhaps the best optometric exam-
ple is provided by the dioptric power matrix: at 
least for thin systems its eigenvectors define 
the principal meridians and its eigenvalues are 
what are well known as the principal powers. 
The matrix is directly involved in calculations 
while its eigenstructure is closer to how optom-
etry has traditionally treated dioptric power.

The ray transference has become fairly 
prominent recently in the optometric literature.  
And yet I can recall no mention of its eigenval-
ues and eigenvectors.  My own expectation has 
been that it was only a matter of time before 

they would raise their pretty heads. So it is 
with no real surprise, and perhaps some sat-
isfaction, to find that they arise in the context 
of the problem of calculating an average eye1. 
Because of the significance of the eigenvalues 
of ray transferences in this context it seems 
appropriate to take a closer look at them.  
Accordingly the purpose of this paper is to 
examine the eigenvalues of transferences for 
their own sake. We shall treat only the simplest 
case, optical systems each of whose refracting 
elements is both stigmatic (that is, not astig-
matic) and centred on a common longitudinal 
axis. We call them centred Gaussian systems. 
The analysis gives a clearer picture of issues 
involved in the calculation of the average eye 
and suggests ways of overcoming some dif-
ficulties.

A recent paper2 proposes a definition for 
an average of a set of eyes. It turns out that 
the definition can be justified mathematically 
provided none of the eyes in the set has a trans-
ference with eigenvalues that are negative real 
numbers.1 But what is the significance of a 
transference with a negative eigenvalue? What 
eigenvalues are possible for a transference of 
an optical system in general and of an eye in 
particular?  As we shall see all eigenvalues 
that are possible for centred Gaussian systems 
are those represented in the complex plane in 
Figure 1.  (The question of how to define an 
average eye, or any optical system for that mat-
ter, is not an easy one.  For more on the topic 
the reader is referred elsewhere.1-6)
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The transference of a centred Gaussian opti-
cal system is a 2 x 2  real matrix

        
T =  

                                                
(1)

with unit determinant. We define its semi-trace
 
s = (A+D) / 2.              (2)

Let λ be an eigenvalue of T.  Then the eigenval-
ues of T are the solutions to the characteristic 
equation of T, namely

det(T–λI) = 0.

We write the solutions as

λ+ = s + s2 –1.                   (3)

The two eigenvalues are reciprocally related,
 
λ_λ+ = 1,              (4)

and the semi-trace is their semi-sum,

s = (λ– + λ+)/2.              (5)            

Equations 4 and 5 can both be confirmed by sub-
stitution from equation 3.

It follows from its definition (equation 2) that 
s can be any real number. In other words, in the 
complex plane, the real axis represents the set of 
all possible semi-traces.We use the results above to 

construct the set of all possible eigenvalues in the 
complex plane.

From equation 3 we see that the eigenvalues are 
real (that is, on the real axis, as shown in Figure 
1) for s2 > 1 and not real otherwise. λ– and  λ+ are 
distinct for s2 = 1. For  s = +1  λ– =  λ+ = +1 .  For   
s2 < 1 we rewrite equation 3 as

λ+ = s + i 1 – s2,             (6)

where i =  – 1.  From equation 3 one finds that 
the eigenvalues in this case have magnitude  
|λ+| = s2 + (1–s2), that is |λ+| = 1. In other words, 
for s2 < 1  the eigenvalues lie on the circle C  
in the complex plane with unit radius and with 
centre at 0 (Figure 1).

Figure 1 shows all possibilities. The eigenvalues 
of transferences of all possible centred Gaussian 
optical systems lie on the real axis, excluding 0, 
and on the unit circle C centred on 0.

The semi-trace s can be plotted on the real 
axis.  This is shown for s = –1.8  approximately 
in Figure 2. For any given s the eigenvalues 
can be obtained by construction in the complex 
plane. For s2 > 1 the construction is as illustrated 
in Figure 2. The semi-trace s defines point S on 
the real line. One constructs a straight line seg-
ment ST tangent to C with T on C .  The right-
angled triangle STO (O is at 0) shows that ST 
has length s2 –1.  A second circle is now drawn 
with S as centre and ST as radius.  Equation 3 
then shows that λ– and λ+ lie at the intersec-
tions of this circle and the real axis.  For s = –1   
λ– and λ+ coincide with s. The same holds for  
s = 1. For  s2 < 1 the real parts of the eigenvalues 
equal s. Thus the eigenvalues lie at the intersec-
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Figure 2  Constructing the eigenvalues for a particular semi-
trace s < –1.  ST is tangent to the unit circle C  at T. λ– and   λ+ 
are at the intersection of the real line and the circle with centre 
S and radius ST.

Figure 1  All possible eigenvalues of transferences in the 
complex plane.  The eigenvalues lie on the real line excluding 
0 and on the unit circle C .  The horizontal line represents the 
real numbers from the negative numbers on the left to the posi-
tive numbers on the right. 0 is at the origin and  – 1 and 1 are 
marked.  The vertical dotted line represents the imaginary num-
bers; i, that is – 1, and  – i are marked.  Points not on the real 
or imaginary number lines represent complex numbers
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Figure 3 Behaviour of the eigenvalues λ– and λ+ as the semi-trace s increases across the real numbers.  (i) is typical of Keplerian 
telescopes, (iii) of human eyes and (v) of Galilean telescopes.  (iv) represents all thin and all elementary systems.

^tion of the vertical line at s and the circle C 
(Figure 3(iii)). In particular for s = 0 λ+ = +i .

Figure 3 shows the behaviour of the eigen-
values as the semi-trace s traverses its range 
from large negative numbers through to large 
positive numbers. In Figure 3(i) λ– increases 
from –   while λ+ decreases from 0– (that is, 
a negative number arbitrarily close to 0). λ–, s 
and λ+  meet at –1 in (ii) and then part company 
with λ– and λ+ becoming complex and changing 
onto the bottom and top halves of the unit circle  C 
respectively. The three meet again at 1 in (iv) before 
separating along the real axis in (v) with λ– decreas-
ing to 0+ and λ+ increasing without limit.

All elementary systems have A = D = 1.  They 
are represented by Figure 3(iv).

For emmetropic eyes A is 0 and for other 
eyes A is usually close to 0.  Typically for eyes 
D is close to 1. Thus for eyes s is around 0.5, 
roughly the situation in Figure 3(iii).

For afocal systems (C = 0), because the 
transference has a unit determinant, AD = 1. 
Thus the semi-trace is s = (1/D+D)/2.  D is the 
usual magnification and is positive for Galilean 
(Figure 3(v)) and negative for Keplerian (Figure 
3(i)) telescopes.

The concept of the average defined els-
where2 is satisfactory provided none of the 



optical systems in the set has eigenvalues that 
are negative real numbers.  We see immediately 
that the average will be satisfactory for a set of 
Gaussian telescopes, for example. We anticipate 
problems with Keplerian telescopes, however.  
Thus for a pair of telescopes (Example 1) with

transferences                 and   

(the magnifications have magnitudes 1 and 2 
respectively) the exponential-mean-log trans-
ference turns out (using MATLAB) to be the

absurd value   On the

other hand (Example 2) the exponential-mean-log 
transference of   

and              

(Keplerian telescopes with magnifications of 
magnitude 3 and 2 respecively) turns out to be 
perfectly reasonable, namely 

(a Keplerian telescope with magnification of 
magnitude 2.4495).

A possible solution suggests itself in the 
case of Keplerian telescopes. There seems to 
be no good reason why one should not define 
a mean via the negative of transferences. In 
other words one could define

Tneg = – exp(

With this average one obtains the very 
reasonable

for Example 1 above,

that is, a Keplerian telescope with magnifi-
cation of magnitude 1.4142.  For Example 2 
the answer is the same as obtained above.

Eyes have eigenvalues, like those rep-
resented in Figure 3(iii), which are some 
distance from the negative real axis.  One 
expects, therefore, that the exponential-
mean-log transference, as defined original-

ly2, will always be well defined in practice 
and that it will always meaningfully charac-
terise an average eye.
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– 0.7071   1.9629 m   0 D          – 1.4142

–1   2 m 0 D   –1 –1/2   2 m 0 D    –2

0   – 4.9296i x 108 m. 0  D          0

–1/3   2 m 0 D    –3 –1/2   2 m 0 D    –2

– 0.4082   1.9916 m 0 D            –2.4495
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