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Abstract
This paper introduces the differential geom-

etry of curves in Euclidean 3-space, the motiva-
tion being the writer’s belief that, despite their 
fundamental importance, curves are inadequate-
ly treated in optometric educational programs. 
Curvature and torsion are defined along a curve. 
Two numerical examples are presented. The 
fundamental theorem of curves is stated. The 
relationship of the geometry of varifocal lenses 
and curves known as involutes are discussed. A 
brief treatment of the theory of contact is given 
with suggestions of applications in contact 
between spectacle lenses and frames, contact 
lenses and corneas (including orthokeratology), 
intra-ocular lenses and structures in the eye, and 
spectacle frames and the face.

Keywords: Curves, curvature, torsion, varifocal 
lenses, theory of contact, differential geometry

Despite their fundamental importance in 
optometry curves and surfaces are treated 
superficially and naïvely in optometric educa-
tional programs. This paper (on curves) and a 
second1 (on surfaces) attempt to outline a proper 
approach to curves and surfaces in the context 
of optometry. The purpose is to introduce the 
mathematical discipline known as differential 
geometry and to point to some optometric appli-
cations. The intention, however, is not to cover 
the material in detail; there are good texts2, 3 

that do that. The intention is rather to attempt 

to present something of the character of dif-
ferential geometry. It is the author’s hope that 
the reader will gain enough insight to be able to 
follow the mechanics of the mathematics in the 
examples in the Appendix.

We review the concept of the vector in 
Euclidean 3-space, vector functions of a scalar 
variable, derivatives of the functions and para-
metric representations. A curve is defined as a 
set of parametrizations. Curvature and torsion 
are defined along a curve. The fundamental the-
orem of curves in space deals with the existence 
and uniqueness of curves of given curvature and 
torsion. Finally involutes and the theory of con-
tact are discussed. The former have a bearing on 
the geometry of varifocal lenses and the latter on 
several matters of optometric importance includ-
ing contact between spectacle lens and frame and 
contact lens and cornea and orthokeratology.

This paper draws heavily on the text by 
Lipschutz3.
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Figure 1. Representation of a vector x in Euclidean 3-space. 
O is the origin. i, j and k are three mutually perpendicular unit 
vectors. x = 3i + 4j + 5k. x is represented by an arrow in (a) and 
a dot in (b).
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Vectors in Euclidean 3-space
Figure 1 is a graphical representation of a 

three-dimensional Euclidean space. There is 
an origin O and three mutually-orthogonal unit 
vectors i, j and k. x is a vector in the space. It 
can be expressed as a linear combination of the 
unit vectors as
x = 3i + 4j + 5k

or we can write it as the coordinate vector

    

Vector x has magnitude or length given by the 
generalization of Pythagoras’s equation

In general we can write

 (1)

and

(2)

If one is working entirely in a plane then two 
coordinates are usually sufficient and equations 
1 and 2 can be reduced to

 
(3)

and

(4)

Two vectors x and y (Figure 2) that make an 
angle θ with one another can be multiplied in 
two important ways. We represent them as
x • y = xy cos θ (5) 
and 
x x y = nxy sin θ. (6)
n is one of the two unit vectors orthogonal to 
the plane containing x and y. Of the two pos-
sibilities n is the one with direction in which 
a right-handed screw would advance if turned 
so that x was rotated through θ towards y. The 
first product (equation 5) is often called the dot, 
scalar or inner product and the second (equa-
tion 6) as the cross or vector product of x and y. 
Although perhaps not immediately obvious the 
dot product is equivalent to the product often 
written x’y in linear algebra, the prime repre-
senting the matrix transpose.

Vector Function of a Scalar Variable
Let x be a function of a scalar t defined on an 

interval I of the real number line.We write it as
x = f(t)  t  I.  (7)
It will be convenient to write equation 7 as
x = x(t)  t  I.  (8)
(Strictly-speaking equation 8 is an abuse of 
mathematical notation because the symbol x 
means two different things at the same time: a 
function on the right-hand side of the equality 
and the value of the function on the left-hand 
side. The context, however, will always make 
the meaning clear in any given case.) Equation 
8 can be thought of as containing three scalar 
functions of the variable t:

     (9)

For each value of the parameter t in the 
interval I there is a corresponding vector x. 
Together all the vectors x form a curve in space 
as in Figure 3. In effect equation 8 is a rule for 
distorting interval I; the straight line segment 
becomes the curve. As t increases from a in the 
interval I = [a, b] vector x changes from x(a) 
at one end of the curve finally reaching the 
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Figure 2. Two vectors x and y in Euclidean space with angle θ 
between them. The scalar product is defined by equation 5 and 
the vector product by equation 6. n is a unit vector orthogonal to 
the plane containing x and y.



other end at x(b) when t = b. One can think of 
the curve as starting at t = a and ending at t = 
b in which case increasing t defines a direction 
along the curve; the curve is then said to be an 
oriented curve.

The following is an example of a vector 
function of a scalar variable:

  (10)

With only two components its graphical rep-
resentation is planar (Figure 4). Traversing the 
interval from 0 to 2π we see that x begins at 
x(0) =    and traverses the curve in an anti-
clockwise sense arriving finally at x(2π) which 
is where it started. The curve is closed. Notice also 
that the curve intersects itself at the point    , 
that is, where θ = π/3 and 5π/3. One can show 
that the same curve can be represented by the 
equation

in terms of Cartesian coordinates x and y.

Derivatives
For some particular value, say t0, of the 

parameter t in the interval I the derivative of the 
function x = x(t) is defined by means of

(11)
     

provided the limit exists. Commonly one abbre-

viates the derivative             as x’(t0). As is evi-

dent from Figure 5 the derivative x’(t) is a vec-
tor tangent to the curve at the value t of the 
parameter.

Higher-order derivatives may also be defined. 
The second and third derivatives are written 
x’’(t) and x’’’(t) respectively. The pth derivative 
is written x(p)(t).

Derivatives are used to define what is called 
the class of a function. We define the class of 
a function here and use it below but the reader 
may find it helpful to skip over all references to 
the concept on first reading. A function x = x(t)
t  I is said to be of class Cm if x(m)(t) exists 
and is continuous on the interval I. Notice that 
a function of class Cm is also of class Cm–1. 
Derivatives of all orders exist for the function 
defined by equation 10; the function is said to 
have class C .

Parametrizations
It can happen that the first derivative of a 

function is null at some point along the curve. 
The curve in that case has no tangent at the 
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Figure 3. A vector function x = x(t) defined on the interval t    I 
and represented in Euclidean space.

Figure 4. Graphical representation of the parametrization 
defined by equation 10.

1
0

0
0

Figure 5. The tangent vector x’(t) at the point with parameter t. 
It is defined by equation 11.

(a) (b)



point. We avoid difficulties that then arise in the 
mathematics by eliminating such functions from 
further consideration. The functions that remain 
are what we call regular parametrizations; they 
are functions with x’(t)  o everywhere. More 
formally a regular parametrization is a function  
x = x(t)  t  I such that x(t) is of class C1 in I 
and x’(t)  o for all t in I.

Equation 10 is an example of a regular 
parametrization. Here is another

 
    .       (12)

The two parametrizations are different although 
they do seem to have similar features. Despite 
the fact that they are different the two parametri-
zations have exactly the same geometrical repre-
sentation, namely Figure 4. Differences are only 
in the way the curve is drawn. Figure 6 shows 
the functions plotted for particular values of the 
parameters: (a) is obtained from equation 10 with 

those values of θ in [0, 2π] that are multiples of 
π/60 and (b) from equation 12 with values  of
 t in 0, 2π that are multiples of π/1200.

Curves
Informally what is illustrated in Figure 4 one 

may call a curve. However it is really no more 
than a geometrical representation of a curve. 
That it is an imperfect representation is apparent 
from the fact that it has a nonzero thickness, for 
example, which the true curve does not have. No 
drawing can fully and precisely capture the true 
nature of a curve. Formally a curve is an abstrac-
tion not necessarily related to any drawing 
although one can frequently illustrate many of 
the features of a curve by means of a drawing.

As we have seen two different parametriza-
tions can generate the same geometrical repre-
sentation. One can in fact find any number that 
will do the same thing. More formally a curve is 
the set of all the parametrizations that generate 
the same geometrical representation. Our con-
cern is only with regular parametrizations and, 
hence, only with regular curves.

Consider a regular curve generated by x = 
x(t)  t  I. If t1  t2 implies that x(t1)  x(t2) 
then the curve is called simple. The curve rep-
resented in Figure 4 is not simple.

From point with parameter t1 to point with 
parameter t2 (t1 < t2) a regular curve has length 
given by

.                                          (13)

Natural Parameter
Arc length s along a curve can be used as 

a parameter. It is then referred to as a natural 
parameter. The parametrization then is x = x(s)  
s  I . Differentiation with respect to a natural 
parameter is usually represented by means of 

a dot instead of a prime. Thus ,

, etc. Like x’(t) (s)
 
is a vector tan-

gent to the curve. More particularly (s) is a 
unit vector. One writes the unit tangent vector 
as

t =  .  (14)

Curves and surfaces in the context of optometry.  Part 1: Curves

The South African Optometrist − December 2005 121121

Figure 6. Equation 10 plotted for θ = iπ/60 in (a) and equation 
12 plotted for t = iπ/1200

 
in (b). i is an integer such that the 

parameters θ and t lie on the intervals I.

(a)

(b)

’t1

t2
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Curvature
Along a straight line the unit tangent vector 

is constant and, hence, = o. In general  is a 
measure of how the curve bends. It is called the 
curvature vector and written

k = .  (15)

See Figure 7. The magnitude of the curvature 
vector is the curvature κ, that is

κ =  |k|.  (16)

The unit vector

n = –    (17)

is called the principal unit normal to the curve 
(Figure 8).

The unit binormal is defined by

b = t x n .  (18)

t, n and b are a triplet of mutually orthogonal 
unit vectors. They in turn define the osculating 

plane, the normal plane and the rectifying plane 
(Figure 8) for the curve at a point on it.

Torsion
In the case of a curve that lies in a plane the 

unit binormal b is fixed (b  = 0) and is normal to 
the plane. In general a space curve ‘twists’ out 
of the plane according to the vector b . The curve 
has a torsion τ defined by

b  = –τn .  (19)

From Curve to Curvature and Torsion
From the definitions it turns out that the cur-

vature and torsion of a curve are given by

 κ = –––––– (20)

and

 τ = –––––––––– (21)

respectively.
From these equations it is evident that cal-

culation of curvature and torsion at any point 
on a given curve is routine. See the Appendix 
for examples. The reverse problem of finding a 
curve with given curvature and torsion proper-
ties along it is more of a challenge.

From Curvature and Torsion to Curve
Suppose we have two continuous functions    

κ(s) and τ(s) defined on an interval [a, b] . Then 
the fundamental theorem of curves in space tells 
us that there exists one and only one space curve 
for which κ(s) is the curvature, τ(s) the torsion 
and s a natural parameter. (For this purpose two 
curves are regarded as the same if they differ 
only in position and orientation in space.)

The fundamental theorem guarantees exis-
tence and uniqueness of the curve, but finding 
the curve is another matter. The equation of the 
curve is the vector function x(s) that satisfies 
the set of equations

t  = κn (22)

n  = –κt + τb (23)

b  = –τn .  (24)
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Figure 7. The unit tangent vector t (defined by equation 14) 
changes along a curve. The curvature vector k (defined by equa-
tion 15) represents the nature of that change.

(a)

(b)

k
κ

Figure 8. The unit tangent vector t, the principal unit normal n, 
the unit binormal b and three planes they define at a point on a 
curve in space.

(a) (b)

|x’   x’’|   
|x’|3   

|x’ • x’’ x x’’’|   
|x’ x x’’|2



These are called the Serret-Frenet equations of a 
curve. Equation 22 comes from equations 14, 15 
and 17; equation 24 is equation 19; and equation 
23 follows from differentiating n = b x t. The 
reader interested in the problem of solving for 
the curve is referred elsewhere2, 3.

Multifocals and Varifocals
Associated with a curve are other curves 

called involutes. They have a bearing on multi-
focals and varifocals.

Imagine a board into which pins are stuck 
as shown in Figure 9 at points C0, C1, C2 and 
C3. One end of a piece of string of length l is 
attached to the pin at C0. A drawing is now con-
structed with a pencil attached at the other end 
while the string is kept taught. Starting at B0 the 
pencil draws an arc of radius l and centre C0. 
When the pencil reaches B1 the string encoun-
ters the pin at C1. Between B1 and B2 the arc has 
centre at C1 and radius l – x1. Between B2 and 
B3 the arc has centre C2 and radius l – x1 – x2. 
Finally between B3 and B4 the centre is C3 and 
the radius is  l – x1 – x2 – x3 . One can think of the 
arcs as the vertical section of the front surface 
of a multifocal lens, a 4-focal in this case. Let 

the lens be in air and have index of refraction 
n. Then the distant portion (arc 0) has power 
(n–1)/l, the first intermediate portion (arc 1) has 

power –––––, the second intermediate portion 

(arc 2) –––––––– and the reading portion (arc 3)

 –––––––––––– .

By inserting more pins on an arc between 
C0 and C3 one can construct the cross section 
of an n-focal where n is some higher integer. 
The more pins there are the closer do they 
approximate a smooth curve C and the closer 
the section B approaches that of a varifocal. The 
relevance of this here is that B is an example of 
what, in differential geometry, is called an invo-
lute of curve C. C is an evolute of B. In general 
terms an involute is a curve traced by the end of 
taught string unwound from (or wound onto) a 
space curve.

Contact
The next topic commonly encountered in a 

course on differential geometry is what is called 
the theory of contact. It has considerable appli-
cations in engineering and, indeed, considerable 
potential applications in optometry.

The equation of a surface can be written as

F(x) = 0  (25)

where F(x) is a function of the vector x. As an 
example consider the surface of a sphere of 
radius a. We could write its equation as

or as

.

The latter is of the same form as equation 25.
Consider a surface (equation F(x) = 0) and a 

curve (equation x = x(t)) in space. They may or 
may not intersect or touch each other. We define 
the function
f(t) = F(x(t)).
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Figure 9. Cross-section of the front surface B0B4 of a 4-focal 
lens. Arcs 0, 1, 2 and 3 have centres of curvature at C0, C1, 
C2 and C3. Arc 0 represents the distance portion, arcs 1 and 
2, intermediate portions and arc 3 the near portion. Arc 0 has 
radius of curvature l, arc 1 has radius of curvature l – x1, arc 
2 has l – x1– x2 and arc 3 has l – x1– x2– x3. Instead of discrete 
points C0, C1, C2 and C3 a varifocal has a curve C. The cross-
section of the front surface of the lens is an involute B of C.

n – 1
l – x1

n – 1
l – x1 – x2

n – 1
l – x1 – x2 – x3



If f (t)  0 then the surface and the curve are not 
in contact at the point on the curve with param-
eter t. If f(t) = 0 then they are in contact there. 
Degrees of contact are defined. If 

f (t) = f ’(t) = f ’’(t) = ... = f (n–1)(t) = 0

but

f (n)(t)  0

then there is n-degree contact at the point.
The higher the degree of contact the more 

snug or intimate is the contact at the point. One 
would expect less stress and deformation and 
greater mechanical stability and thermal con-
duction at points of higher degree of contact. 
One would also expect better charge transfer 
with electrical contacts of higher degree.

Optometric applications immediately spring 
to mind: contact between lens and frame and 
the problem of chipping and cracking; contact 
between the frame and the face; contact between 
the contact lens and the cornea; orthokeratolo-
gy; contact between the haptic of an intra-ocular 
lens and structures in the eye and the problem of 
the positional stability of the lens.

Concluding Remarks
We have given here a brief outline of the 

differential geometry of curves. For more detail 
the reader could consult standard references2, 3.

Mention has been made of application in 
varifocal lenses and to problems of contact 
between lenses and frames and lenses and ana-
tomical structures. No doubt there are many 
more possibilities.

A subsequent paper1 introduces the differen-
tial geometry of surfaces.
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Appendix

Example 1
We calculate the curvature at points along the 

curve in Figure 4. We make use of the param-
etrization given by equation 10. Differentiation 
gives

x’ =   

and

x’’ =

Hence

x’ x x’’ =

which simplifies to
x’ x x’’ = (9 – 6cosθ)k .

Also

|x ’|2= 5 – 4cosθ.

Hence, from Equation 20, the curvature is

κ =     

As expected the curvature is a function of the 
parameter θ. Its maximum, 3 units, occurs at θ = 
0. It is 2/  units at θ = π/3 (the self-intersec-
tion) and a minimum of 5/9 units at θ = π.

Example 2
We calculate the curvature and torsion along 

a helix. We begin with the parametrization

x =
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The derivatives are

x’ =

x’’ =

and

x’’’ =

Hence

x’ x x’’ =

or

x’ x x’’ =

Hence

|x’ x x’’|

and

|x’|                .

Also

x’ • x’’ x x’’’ = 

Equations 20 and 21 then give the curvature

κ =

and the torsion

τ =

Both curvature and torsion in this case are inde-
pendent of the parameter. They are the same 
everywhere on the helix.
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