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Abstract
The concept of the exploded refracting sur-

face is useful in the optics of contact lenses and 
vision underwater. The purpose of this paper is 
to show how to represent a refracting surface 
as an exploded pair of surfaces separated by a 
gap of zero width.  The analysis is in terms of 
linear optics and allows for astigmatic and non-
coaxial cases.  

The concept of the exploded refracting surface 
is useful in contact lens optics1, 2 and in the analy-
sis of vision under water, the latter of these being 
a future goal of the authors. The exploded surface 
allows one to treat the submerged eye as being in 
contact with air and so retain its optical character. 
This allows for an easier comparison of the sub-
merged eye to the eye in air.

The goal of this paper is to show, in general, 
how to represent a single refracting surface as a 
system of two juxtaposed single refracting sur-
faces. Explicit formulae are presented in equations 
8 and 9 for the transferences of the two surfaces.

We make use of linear optics1-15 within which 
the transference is an important concept. We start 
by reviewing the transference9 and more particu-
larly the transference of a single refracting surface 

to find the general divergence C and deviation 
π for any single refracting surface. From there 
we explode the single surface into two surfaces 
separated by a gap of zero width. The transfer-
ences for the two surfaces are found and from this 
explicit formulae are presented that can be used 
to calculate the transferences of the two surfaces 
in the exploded representation of a surface from 
the information contained in the transference of 
the original surface. The approach is general and 
allows for surfaces that may be astigmatic and 
non-coaxial.

The augmented ray transference9 is

                               .                     (1)

The 2 x 2 sub-matrices A, B, C, and D are 
respectively called1 the dilation, disjugacy, diver-
gence and the divarication. The 2 x 1 sub-matrices 
e and π are called the translation and deviation 
respectively and they allow for systems that con-
tain tilted and decentred elements.  These are the 
six fundamental properties of any optical system 
from which other properties can be derived.10  o 
is the 2 x 1 null vector and o'  its transpose which 
together with a scalar 1 make up the bottom row. 
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We will often simply refer to T as the transference 
and also often omit the bottom row. Dioptric power 
F is defined by F = −C.11

For a homogeneous gap the transference is9

 
,                                            (2)

where ς is the reduced width of the gap. The bottom 
row is omitted to save space. I is the 2 x 2 identity 
matrix and O the 2 x 2 null matrix. A special case 
is the 5 x 5 identity transference where ς = 0.

Of particular relevance here is the transfer-
ence of a single refracting surface9

        
 (3)

where F is symmetric.11

We now examine F and π in particular.
Dioptric power can be represented as12

C = −F = −K(n2 − n1)  (4)

where K has been called the curvature matrix12 of 
the surface and n1 and n2 are the refractive indices 
of the media upstream and downstream of the sur-
face respectively.

The deviation π dependS on the non-coaxiality 
of the surface with respect to the longitudinal axis 
Z.  A surface normal to Z has π = o.  For π =/   o the 
surface is tilted by b and/or decentered by c. In 
general13

π = (Kc + b)(n2 − n1).   (5)

Next we explode T into two surfaces T1 and T2, 
that is, we imagine two surfaces that are separated 
by a gap of zero width, that have the same cur-
vature as T, and that also have the same amounts 
of tilt and decentration as T. Upstream of T1 the 
medium has refractive index n1, and downstream 
of T2 the medium has refractive index n2. The 
medium in the gap between T1 and T2 has refrac-
tive index n0. We refer to  n0 as the reference index. 
n0 is arbitrary although in most cases it is likely to 
be 1. From this we know that T1 has power F1 = 
K(n0 − n1) and deviation π1 = (Kc + b)(n0 − n1). 
Similarly for T2 we have  F2 = K(n2 − n0) and π2 

= (Kc + b)(n2 − n0).
Using equation 4 we can represent F1 as

                                   (7)

and similarly for F2. Making use of equations 
4 and 5 we find similar expressions for π1 and 
π2. These results lead one to a transference for 
each surface in terms of F, π and the respective 
refractive indices. By adding and subtracting I 
from each of the two transferences, and rear-
ranging the terms, one finds

T1 = x1T + (1 − x1)I,                                 (8)               
and  
T2 = x2T + (1 − x2)I                                  (9)

with   and        . 

The transferences of two surfaces separated 
by a gap of zero width is T2IT1. Therefore, the 
transference of the system of the two surfaces 
can simply be represented by T2T1 which recov-
ers the transference T.

The result above allows one to represent 
a single refracting surface as a system of two 
refracting surfaces, which are separated by gap 
of zero width that is filled with a medium with 
a refractive index defined as the reference index.  
Therefore, given any transference of a single 
refracting surface T, one can design a system of 
two juxtaposed refracting surfaces T1 and T2, 
that will yield the same transference.
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