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Abstract
The optical character of an optical system is 

changed if the system is reversed.  This is as true of 
eyes as it is of telescopes.  In vision light traverses 
the eye from cornea to retina; in ophthalmoscopy 
the practitioner views the retina via light travers-
ing the eye in the reverse direction.  The purpose 
of this paper is to determine the relationship of the 
optical character of the reversed system to that of 
the system itself.  The result is in terms of the ray 

Introduction

In vision light traverses the eye from the cornea 
to the retina.  In ophthalmoscopy, and in many other 
processes of optometric and opththalmological inter-
est, light traverses the eye in the reverse sense, from 
the retina and out through the cornea.  Relative to the 
eye in vision the eye in ophthalmoscopy is a reversed 
optical system.  It is of interest in ophthalmology and 
optometry, therefore, to know how the optical charac-
ter of the system and the reversed system are related.  
Because a system’s ray transference represents a com-
plete first-order optical characterization of the sys-
tem1 5−  the problem is solved completely in general 
if, given the transference of the system, we can obtain 
the transference of the reversed system.  Accordingly 
the purpose of this paper is to derive, for an arbitrary 
optical system, an expression for the transference of 
the reversed system in terms of the transference of 
the system itself.  Explicit expressions for the dioptric 
power and for all the fundamental first-order optical 

properties of the reversed system are also found.
Although the eye is the primary motivation for this 

exercise we also have in mind other systems that are 
reversed in optometric and ophthalmological applica-
tion, telescopes and the Jackson cross-cylinder, for 
example.

An arbitrary system

Figure 1(a) shows an arbitrary optical system S.  
Z is a longitudinal axis: it defines the positive sense 
through the system.  T0 is the entrance plane and T 
the exit plane of the system.  The system has trans-
ference 3, 4

T
A B e
C D
o o

:=











π

T T 1
(1)

transference of the system.  Since the ray transfer-
ence gives a complete characterization of the first-
order optics of a system the analysis is complete 
in this sense as well.  Explicit expressions are also 
presented for the effect of reversal on the six funda-
mental first-order optical properties of the system.

Keywords:  reversed eye, transference, symplec-
ticity, ray state, fundamental properties, optical 
system
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T is 5 5× .  Submatrices A (the dilation), B (the disju-
gacy), C (the divergence) and D (the divarication) are 
2 2×  and submatrices e  (the transverse translation) 
and π  (the deflection) are 2 1× .  The six submatrices 
are the fundamental first-order optical properties of 
the system. e  and π  are a consequence of prismatic 
and decentred elements in the system. o is the 2 1×   
null matrix and oT  is its matrix transpose.

Figure 1  An arbitrary optical system S in (a) has longitudi-
nal axis Z and entrance and exit planes T 0  and T respectively.  
When applied to the eye T 0  may be immediately in front of the 
cornea and T immediately in front of the retina.  The medium 
immediately before the system has index n0   and the medium 
immediately after it has index n.  An arbitrary ray R 0 R traverses 

the system.  The ray is reversed in (b) to become ray R R
← ←

0  .  

The system becomes the reversed system S
←

  with longitudinal 

axis Z
←

  and entrance and exit planes T
←

0   and T
←

 .

A ray R0R traverses the system in Figure 1(a).  At 
incidence onto T0 it has state

1

: 0

0

0γ

y

     
and at emergence from T it has state

γ :
y

1

(2)

the two states being related by
Tγ γ0 = .      
The incident and emergent states γ0   and  γ  are 5 1×  
Submatrix y0   represents the transverse position of 
the ray on the entrance plane T 0  relative to longitudi-
nal axis Z.  It is 2 1×  and has the form

y0
10

20

:=









y
y

where y10 is the horizontal coordinate and y20  the ver-
tical coordinate.  Similarly y represents the position 
of the ray at emergence from the exit plane T.  Sub-
matrix α0  is the reduced inclination of ray segment 
R 0  at incidence onto T 0 relative to Z.  It is related to 
the incident inclination a0  by
α0 0 0:= n a

where n0  is the index of refraction immediately be-
fore the entrance plane T 0 .  Like y0

10

20

:=









y
y

in Equation 5 α0   
and a0   have horizontal and vertical coordinates.  For 
example a10   is the horizontal component of the angle 
of incidence of ray segment R 0  onto T 0  and a20  is 
the vertical component.  Similarly submatrix α0 is the 
reduced inclination of segment R of the ray at emer-
gence from exit plane T and it is related to the emer-
gent inclination a by
α := na
where n is the index immediately after exit plane T.

The reversed system

We now reverse the general direction of the light 
though the system (Figure 1(b)).  This requires re-
versal of the longitudinal axis: longitudinal axis Z 
becomes longitudinal axis Z

←

 .  We say that system S 
has become reversed system S

←

 .  The exit plane T of 
system S becomes the entrance plane T

←

 of S
←

 and the 
entrance plane T

←

0  of S becomes the exit plane T
←

 of 
S
←

. Reversed system S
←

 has transference

T

A B e

C D
o o

: .
T T 1

We shall also refer to T
←

as the reversed transference.  
(3)

(4)

(5)

(6)

(7)

(8)

.

γ γ
γ γ
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Similarly A B C D e
← ← ← ← ←

, , , ,  and π
←

 are the fundamental 
properties of the reversed system; we shall also call 
them reversed properties.

Our goal is to determine the reversed transference   
T
←

 in terms of the (unreversed) transference T and, 
hence, to determine the reversed fundamental proper-
ties in terms of (unreversed) fundamental properties.

Reversing ray R 0 R results in ray R R
← ←

0  (Figure 
1(b)).  At incidence onto T

←

0   it has state

γ 0

0

0

1
:

y

and at emergence from T
←

  state

γ : ,

y

1

the two states being related by

T
← ← ←

=γ γ0 .

The relation between the system and the reversed 
system

Consider incident ray segment R 0 .  After reversal 
it becomes emergent segment R

←

.  More particularly 
we consider the vertical coordinates y20   and y

←

2   of 
the position vectors y0   and y

←

  of the two segments.  
Clearly we have

y y
←

=2 20.      
On the other hand for the horizontal coordinates we 
find

y y
←

=−1 10.

This follows because, for example, a ray position to 
the right in system S becomes a ray position to the 
left in system S

←
 .  Combining Equations 12 and 13 

we obtain

(9)

(10)

(11)

y

y

y
y

←

←












=
−









1

2

10

20

which can be written conveniently as

y Jy
←

=− 0

where

J : .=
−











1 0
0 1

We now consider the reduced inclinations of ray 
segments R 0  and R

←

.  On reversal a ray inclined up-
ward becomes a ray inclined downward and a ray in-
clined to the right remains inclined to the right.  It 
follows that

α α
←

= J 0.

Finally we consider emergent ray segment R.  It 
becomes incident segment R

←

0   on reversal.  We ob-
tain

y Jy
←

=−0 .

and

α α
←

=0 J
Substitution from Equations 18 and 19 into Equa-

tion 9 we obtain

γ 0

1

Jy
J

which we can write as

γ γ
←

=0 N

where

N
J O o

O J o
o o

:=
−









T T 1

is 5 5×  , diagonal and involutary.  (M is involutary 
if   M I2 = where I is an identity matrix. 6   Such ma-
trices are also called unipotent. 7 )  O is the 2 2×   null 
matrix.

Similarly, substituting from Equations 15 and 17 
into Equation 10 we find that

γ γ
←

=N 0.

We now substitute from Equations 21 and 23 into 

(12)

(13)

(16)

(15)

(14)

(19)

(18)

(17)

(22)

(21)

(20)

.

(23)

γ

γ

γ γ
.

γ

γ γ

γ γ
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Equation 11:

T N N
←

=γ γ0.

Because N N− =1   we can rewrite Equation 24 as

N T N
←

=γ γ0.

But from Equation 4
T− =1

0γ γ .

Comparing Equations 25 and 26 we see that

N T N T
←

−= 1

from which it follows that

T NT N
←

−= 1 .
Equation 28 is the solution we have been seeking, 
namely the transference T

←

  of reversed system S
←

  in 
terms of the transference T of (unreversed) system S.

Because of symplecticity 8  T−1 exists uniquely for 
every system.  Hence, by Equation 28 we see that the 
reversed transference T

←

  also exists uniquely for eve-
ry system.  Reversing a system twice returns it to the 
way it was which is in agreement with

T T
←
←

= ,
a result that follows from applying Equation 28 
twice.

The relation between the fundamental properties 
of the system and the reversed system

Using the fact that the block 
A B
C D








   is symple-

ctic one can readily show by direct multiplication 
that

T
D B D e B
C A C e A
o o

− =
− − +

− −













1

1

T T T T

T T T T

T T

π
π .

Substituting into Equation 28 one finds that

T
JD J JB J JD e JB
JC J JA J JC e JA

o o

←

=
−
−













T T T T

T T T T

T T

π
π

1

.

Hence the fundamental properties of the reversed sys-
tem are

(26)

(25)

(24)

(27)

(29)

(28)

A JD J
←

= T

B JB J
←

= T

C JC J
←

= T
 

D JA J
←

= T

e JD e JB
←

= −T Tπ

π π
←
= −JC e JAT T .

By definition the dioptric power matrix is 9

F C: .=−

Hence, from Equation 34, we have

F JF J
←

= T .
If we write disjugacy B in terms of its elements as

B=










b b
b b

11 12

21 22

and evaluate the right-hand side of Equation 33 we 
find that

B
←

=
−

−











b b
b b
11 21

12 22

.

In other words, reversing the system interchanges 
the two off-diagonal elements of B and changes their 
signs.  The diagonal elements of B are unchanged.  The 
same applies in the case of divergence C as Equation 
34 shows and power F as Equation 39 shows.  The 
same also applies in the case of dilation A and divari-
cation D except that A and D are also interchanged 
(Equations 32 and 35).  Equations 36 and 37 show 
that the effect of reversal on the transverse translation 
e  and deflection π  is more complicated.

If we expand disjugacy as
B I J K L= + + +B B B BI J K L ,

where

K :=










0 1
1 0

and

L :=
−











0 1
1 0

we see from Equation 33 that

B I J K L
←

= + − +B B B BI J K L .

(30)

(31)

(37)

(36)

(35)

(34)

(33)

(32)

(43)

(42)

(41)

(40)

(39)

(38)

(44)

(45)

γγ

γ γ

γ γ
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In other words the only effect reversal has on disjuga-
cy is to reverse the sign of the coefficient of K, that is, 
to reverse the sign of the oblique antistigmatic com-
ponent.  The same applies to divergence C and power 
F.  Again it also applies to A and D except that A and 
D are also interchanged.

Systems with A O=   cause parallel incident rays 
to focus in the exit plane of the system; they are exit-
plane focal systems.  If the system is an eye then it is 
emmetropic. 5   Systems with D O=   are entrance-
plane focal.  Equation 35 shows that, as expected, an 
exit-plane focal system become entrance-plane focal 
when reversed and Equation 32 that the reverse is also 
true.  A conjugate system ( B O=  ) remains a conju-
gate system on reversal in agreement with Equation 
33 and an afocal system ( C O= ) remains afocal in 
agreement with Equation 34.  Equations 36 and 37 
show that a centred system (e o=  and π= o ) re-
mains centred.  However it follows from Equation 36 
that a system with e o=   does not in general imply  
e o
←

= .  Similarly (Equation 37) a system with π= o   
does not necessarily implyπ

←

= o   , a case that is illus-
trated in the following example.  Consider a particular 
decentred thin lens followed by a homogeneous gap 
and a thin prism.  The transference is

T
I O o
O I
o o

I I o
O I o
o o

= −
























π

T T T T1 1

ζ














I O o
C I
o o

π
T T 1

or

T
I C I

C I o
o o

=
+











ζ ζ ζπ

T T 1

where the divergence C is symmetric and I is the   
2 2× identity matrix.  It follows from Equations 32 to 
37 that the reversed transference is

T
I I J

JCJ I JCJ JC
o o

←

= +













ζ ζ
ζ ζ

π
π

T T 1
.

Thus, while the system has a null deflection (Equation 
47), the reversed system does not (Equation 48).  For 
a thin system

T
I O o

JCJ I J
o o

←

= −












π

T T 1
.

The effect of the operation JCJ  on C in Equations 48 
and 49 is merely to change the sign of the off-diago-
nal elements.  Because of Equation 39 the same is true 
of the dioptric power F.

If none of the elements of the system is astigmatic 
then the four 2 2×   fundamental properties are scalar 
matrices and Equation 31 reduces to

T
I I Je J
I I Je J

o o

←

=
−
−













D B D B
C A C A

π
π

T T 1
.

Thus the disjugacy, the divergence and the power are 
unchanged by reversal while the dilation becomes the 
divarication and vice versa.

In Gaussian optics the transference reduces to a   
3 3×  matrix.  The reversed transference can be ob-
tained from the analysis above by ignoring the hori-
zontal coordinate.  The result turns out to be

T
←

=
− +
− +













D B De B
C A Ce A

π
π

0 0 1
.

Conclusion

Equation 28 answers the problem posed in this pa-
per.  It shows explicitly what happens to the transfer-
ence of an eye, or any other optical system, when the 
system is reversed.  N in that equation is the diagonal 
matrix defined by Equation 22.  The six fundamen-
tal properties of the system are changed according to 
Equations 32 to 37 where J is the matrix defined by 
Equation 16.  When astigmatism is ignored the re-
versed transference reduces to that given by Equation 
50 and, in Gaussian optics, by Equation 51.  In the 
absence of astigmatism disjugacy, divergence and 
power are unchanged by reversal (Equations 50 and 
51).  That is not true in the presence of astigmatism 
although, in the case of these properties, the change is 
only that the oblique antistigmatic component has its 
sign changed as illustrated by Equation 45.
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