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Abstract
     Variations in corneal surface powers reflect vari-
ations in the geometry of the cornea.  In particular 
one can regard corneal surface curvature as a com-
bination of local and global effects.  A simple math-
ematical model of the cornea is presented which 
makes use of measurements of the curvature of the 
anterior and posterior surfaces to decompose the 
curvature into global and local contributions.  The 
model gives insight into the source of variations in 
keratometric measurements, lids and eye turn, per-
haps, for global effects and the tear film, perhaps, 
for local effects.  The model also takes account of 
the thickness of the cornea.  A numerical example 
is presented.

Key words: corneal curvature, local, global, diopt-
ric power matrix, variation

Introduction

     Gillan1  has recently examined the front- and back-
surface powers of a cornea and their variation.  He 
shows that the front surface varies much more than 
the back surface.  While dioptric power is relevant 
for the optics of the eye it is less directly relevant for 
understanding the underlying causes of the variation.  
Indeed it might even be misleading.  The purpose of 
this paper is to show how consideration of surface 
curvature instead of surface power has the potential 
to provide insight into these matters.  A very simple 
model is developed that allows one to separate out 
what one might call global curvature of the cornea 
from local effects.  The model makes use only of 
measurements of corneal thickness and anterior and 
posterior surface curvature.

Surface curvature
     The curvature of a surface is simply related to the 
dioptric power of the surface.  In Gaussian optics the 
power F  and curvature κ  of a surface are related by
          						              (1)
where ∆n   is the index of refraction after the surface 
minus the index before it.  In linear optics this gener-
alizes to 2

 F=κ∆n .                                                               (2)
Here F  is Fick’s 3  and Long’s 4  dioptric power matrix 
(symmetric and 2 2×  ).  Surface curvature   , then,   
differs from dioptric power in the case of surfa-ces 
only by the scalar factor ∆n .  It, therefore, has the 
same mathematical character as symmetric dioptric 
power.  In particular it, too, is a symmetric 2 2×   ma-
trix.  It follows that all the mathematical and graphical 
techniques developed for symmetric dioptric power 
can be used directly for surface curvature as well.
     In terms of its entries κij the surface curvature is
 
κ                      .                                                      (3)	
				  
Just as for the fij  , the entries of F, the κij   depend on 
the reference meridian which we take to be horizontal 
unless otherwise stated. κ11   is the curvature in the 
reference meridian; κ21  represents the torsion in the 
reference meridian; and κ22  is the curvature in the 
meridian orthogonal to the reference meridian. 5 6, Fol-
lowing what can be done 7  for F the curvature κ  of 
Equation (3) can be represented as the sum
κ = + +κ κ κI J KI J K 			                     (4)
of three components of curvature, κII , the spherical 
component, and κJJ   and κKK  which we shall refer 
to as the ortho- and oblique antispherical components 
respectively.  Here  
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κI  ,κJ  and κK  are three scalars, the spherical and the 
ortho- and oblique antispherical coefficients of cur-
vature.

A simple model
     Consider a soap bubble on the bowl of a toy pipe.  
The curvature of the bubble can be varied globally 
by blowing more air into, or releasing air from, the 
bubble through the pipe.  The curvatures of the two 
surfaces (the inside and outside surfaces) are approxi-
mately equal and remain so.  However one can also 
imagine local effects which cause differences in the 
two curvatures and their variation: ripples, for exam-
ple, confined to one of the surfaces.  They would cause 
differences in measurements of curvature of the two 
surfaces and its variation.  This suggests one might 
distinguish global and local effects, the former being 
dependent on the degree to which the two surface cur-
vatures match and the latter the degree to which they 
differ.
     Let one surface have curvature κ1  and the other 
curvature κ2 .  One can think of two contributions to 
the curvature of a surface, the global κm   and the local 
κd curvatures.  In particular, for the second surface,
κ κ κ2 := +m d2 	                                             
If we define
κ κ κd2 := −( )1

2 2 1                                                     
then we have
κ κ κm = +( )1

2 2 1                                                         
Interchanging subscripts 1 and 2 we obtain corre-
sponding equations for the first surface; it follows 
that
κ κd1 d2=−                                                              
We regard κm , defined by Equation (7), as a measure 
of the coordinated behaviour of the two surfaces of 
the bubble, the net curvature of the bubble itself or as 
a whole.  On the other hand we can regard either κd2  
or κd1  as a measure of the degree of independence 
of the two surfaces, a measure of small-scale effects. 
κd2  expresses the small-scale effects as the curvature 
of the posterior surface relative to the curvature of the 
anterior surface; κd1   does the opposite.
      In our discussion so far the thickness of the wall of 
the bubble has played no explicit role.  Implicitly we 
have assumed the thickness to be negligible.  For glo-
bal effects we have taken the curvatures of the surfac-
es of the bubble to be the same.  In the case of the cor-
nea the thickness may not be negligible; it is roughly 
0.5 mm while the radius of curvature is around 7 mm.  
This suggests that thickness might matter and that it 
might be appropriate to attempt to account for it in 

the model.  In order to gain clarity on how we might 
do so we look first at a two-dimensional model of the 
cornea before generalizing to three dimensions.

A two-dimensional model
     Consider a cornea of thickness t (Figure 1).  Be-
cause of the thickness the curvatures of the two sur-
faces S1  and S 2  are not directly comparable.  In order 
to make them comparable we shall bring them to a 
common basis by referring them to the mid-corneal 
surface S m .  If the surface S1  has radius of curvature      
    then its curvature is

κ1
1

1:=
r  					            

We define the compensated radius of curvature of the 
first surface referred to the mid-corneal surface by 

r t
1 2
− .  Hence the compensated curvature of the front 

surface referred to the mid-surface is
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Similarly, the compensated radius of curvature of 
the back surface referred to the corneal mid-surface 

is r t
2 2
+   from which we obtain the compensated 

curvature of the back surface referred to the mid-sur-
face,
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      We now make use of Equations (6) and (7) but 
with the compensated surface curvatures κ1m   (Equa-
tion (11)) and κ2m  (Equation (12)) instead of the ac-
tual surface curvatures κ1  and κ2 :

κ κ κm m m:= +( )1
2 2 1 	                                           

and
κ κ κd m m2

1
2 2 1:= −( )  	
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 .                                                                 (9)

or
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In a sense κm  represents a global curvature of the cor-
nea, a curvature of the cornea as a whole taken at its 
mid-surface. κd2  is a measure of how different the 
curvatures of the two surfaces are.  It, too, acts, as 
it were, at the mid-surface although it is defined in 
terms of the second surface.  It can equally well be de-
fined in terms of its negative (compare Equation (8)), 
that is, in terms of the first surface.

A three-dimensional model
     The situation in three dimensions is considerably 
more complicated.  However we shall simply gen-
eralize the scalar equations for the two-dimensional 
case to the corresponding matrix equations for three 
dimensions.  The model is simple because we are of-
fering no additional justification.  Equations (11) and 
(12) become
 								      

κ κ1 1
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2m := −
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−
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respectively.  Reciprocals of scalars have been re-
placed by inverses of matrices.  The identity matrix 
I is required to make the bracketed term conform for 
subtraction and addition.
      Equations (13) and (14) generalize to
 								      

κ κ κm m m:= +( )1
2 2 1 	                                           

and
κ κ κd m m2

1
2 2 1:= −( )  				          

	
      Equation (15) gives the curvature of the first sur-
face of the cornea compensated for thickness; Equa-
tion (16) gives the same but for the second surface.  
Equation (17) defines what we mean by the global 
curvature of the cornea and Equation (18) defines the 
local contribution to curvature (of the second surface 
relative to the first surface), both being referred to the 
corneal mid-surface.  Equation (5) applies except that 
the left-hand side is κ2m  .
	 Equations (15) and (16) can be rewritten as
 								      

κ κ κ1 1 1

1

2m = −


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
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−

I t
	                                           (19)

and

κ κ κ2 2 2

1

2m = +

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−

I t

 
      Equations (19) and (20) each involve only a single 
inverse while Equations (15) and (16) each involve 
two inverses.  The latter pair, therefore, has a greater 
probability of failing in the event that an inverse does 
not exist.  For example, Equations (15) and (16) fail 
when the surface in question is flat (the curvature is 
the null matrix) whereas Equations (19) and (20) re-
main perfectly satisfactory.  Equations (15) and (16) 
also fail when the surface is 

Figure 1  A cornea represented by its anterior and posterior surfaces S 1  and S 2 .  C 1  and C 2  are the centres of curvature of the 
anterior and posterior surfaces respectively and r1   and r2   are the radii of curvature.  t is the thickness.  S m  is the mid-corneal 
surface.

.			        (20)
(15)  

(16)

(17)

.                                           (18)



to the former and the tear film or phenomena closer to 
cellular level might contribute to the latter. The model 
may, therefore, give insight into the relevance of such 
effects. 
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cylindrical.  Of course such circumstances are unlike-
ly in the case of the cornea.
     A potential numerical disadvantage Equations (19) 
and (20) have relative to Equations (15) and (16) is 
that the curvatures κ1  and κ2  have each to be input 
twice.

An approximation
     The binomial expansion can be applied to Equa-
tions (19) and (20) to obtain the approximate equa-
tions

κ κ κ1 1 12m ≈ +






I t

				  
and

κ κ κ2 2 22m ≈ −
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These can be written as

κ κ κ1 1 1
2

2m ≈ +
t

				  
and

κ κ κ2 2 2
2

2m ≈ −
t

				  
Equations (23) and (24) show compensation for thick-
ness as an added term in curvature squared and pro-
portional to thickness.
     Substituting into Equations (17) and (18) and rear-
ranging we obtain the approximations

κ κ κ κ κm ≈ +( )− −( )1
2 42 1 2

2
1
2t

		
and

κ κ κ κ κd2 2 1 2
2

1
21

2 4
≈ −( )− +( )t

 		
     The approximate expressions contain no inverses 
and so always work.  

Concluding remarks
     A simple model has been devised here to make use 
of measurements of corneal surface powers and thick-
ness to give what we call the global (Equation (17)) 
and local (Equation (18)) components of the curva-
ture of a corneal surface.  Both components are re-
ferred to the mid-surface of the cornea and in a sense 
are regarded as acting there.  We have not attempted 
to explore these concepts beyond their mathematical 
definitions.  However, we regard the global compo-
nent as representative of a macroscopic portion (say 
2 mm or more) of the cornea as a whole and the local 
curvature as a consequence of more microscopic ef-
fects perhaps an order of magnitude smaller in scale.  
One imagines that lids and eye turn might contribute 

     
     Interestingly the equations for surface curvature 
compensated for actual thickness t are essentially 
the same as the equations involved in step-along ver-
gence calculations 8  9  ,  across a homogeneous gap of 
reduced thickness t / 2  .  The equations for κ1m   and 
κ1m   (Equations (11), (15) and (19)) correspond to a 
forward step and those for κ2m   and κ2m   (Equations 
(12), (16) and (20)) correspond to a backward step.
     Examination of the dioptric powers of the front 
and back surfaces, as opposed to the curvatures, may 
be misleading in the sense of suggesting small values 
and little variation of the back surface in comparison 
with the front surface.  There is an order of magni-
tude difference as is illustrated at the end of the nu-
merical example in the Appendix.  On the other hand 
when curvatures are examined instead, particularly 
compensated for curvature, we see a different picture; 
magnitudes turn out to be comparable (as in the ex-
ample in the Appendix).

In many cases (such as that treated in the Ap-
pendix) it seems possible to get away with using ap-
proximate expressions (Equations (25) and (26)) for 
the global and local curvatures.  A much grosser ap-
proximation (Equations (7) and (6)) ignores thickness 
altogether.
     The intention here has been to attempt to extract 
additional information from relatively simple clini-
cal measurements made on the cornea.  The model 
is extremely simple and, no doubt, can be criticized 
on many grounds.  Certainly any conclusions drawn 
from it need to be interpreted with due caution.
        A paper is in preparation10  that applies the meth-
od developed here to analyze the cornea of a kerato-
conic eye.

Acknowledgements
I thank W D H Gillan for discussions and for 

commenting on the manuscript.

Appendix: a numerical example
     Consider a cornea of thickness 0.5 mm.  The front 
surface has radii of curvature 7.80 mm along a prin-
cipal meridian at 15°  and 7.65 mm along the other 
principal meridian.  (These figures are taken from an 
example in the text by Bennett and Rabbetts11 .)  The 
back surface has radii of curvature 8.20 mm along 
a principal meridian that is horizontal and 8.00 mm 
along the vertical meridian.
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     If one ignores thickness one obtains global 
curvature

κm =
−

−


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




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125 16 0 31
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via Equation (7) and local curvature

κd2

3 21 0 31
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. .
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via Equation (6).
     For the global curvature the curvature coefficients 
of the cornea are κI =126 66. D, the spherical coef-
ficient, κJ =−1 29. D, the ortho-antispherical coef-
ficient, and κK =−0 33. D, the oblique antispherical 
coefficient.  For the local component of curvature 
the coefficients are κI =−6 99. D, κJ =−0 14. D and 
κK = 0 33. D respectively.
     If we take the indices of refraction to be n0 1=   
(air in front of the eye), n1 1 376= .   (the cornea) and 
n2 1 336= .   (the aqueous) we obtain the following 
principal meridional surface powers of the cornea: 
48.21 D along 15°  and 49.15 D for the first surface 
and −4 88.  D and −5 00.  D for the back surface.
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     We obtain the curvatures along the principal 
meridians: for the first surface we have 128.2 D along 
15°  and 130.7 D and for the second surface 122.0 D 
along 180°  and 125.0 D.  This represents the eigen-
structures of the two surface curvatures.  Solving the 
reverse eigenvalue problem one obtains the curvature 
matrices themselves.  One does so in exactly the same 
way as one obtains the dioptric power matrix from the 
principal meridional 
powers. 12   The result is the curvature of the first sur-
face

κ1

128 37 0 63
0 63 130 55

=
−

−


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and the curvature of the second surface

κ2
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=

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
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.
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Equations (15) or (19) give the front-surface curva-
ture compensated for thickness,

κ1
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0 67 134 96m =

−
−
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
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. .
. .   

Compensation increases the magnitudes of the en-
tries in the matrix by some 4%.  Equations (16) or 
(20) give the back-surface curvature compensated for 
thickness,

κ2

118 34 0
0 121 21m =









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.
.   

Compensation decreases the magnitudes by roughly 
the same proportion.  Then the global curvature of the 
cornea is given by Equation (17),

 
κm =

−
−


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and the local curvature by Equation (18),
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The eigenstructures of these matrices give the curva-
tures in a form perhaps more familiar to the clinician: 
the cornea’s global curvature is 125.44 D along 7 25. °  
and 128.13 D and the local curvature for the second 
surface is −7 37. D along 146 03. °   and −6 65. D.  The 
corresponding global radii of curvature are 7.972 mm 
along 7 25. °  and 7.805 mm.
     From the approximate equations (Equations (23) to 
(26)) one obtains similar results:
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