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Abstract

Expressions are derived for the deflection and trans-
verse translation of a ray as it traverses an arbitrary 
optical system.  The system may be astigmatic and 
have relatively decentred refracting elements.  The 
expressions are in terms of the fundamental prop-
erties of the system.  Because nodal rays are rays 
that undergo no deflection the results lead immedi-

ately to expressions that define nodal rays through 
the system.  An optical axis of an optical system is 
a nodal ray that is a straight line through the sys-
tem.  This allows one to write an expression that 
determines the optical axis of an arbitrary optical 
system.

Key words: deflection, transverse translation, nod-
al rays, optical axis

Introduction

A ray entering an optical system usually leaves the 
system with a different direction and at a different dis-
tance from the longitudinal axis.  Thus the ray under-
goes deflection and transverse translation as it traverses 
the system.  The deflection and transverse translation 
are shown as the scalars nCya /0=∆  and nCya /0=∆y in Gaussian optics 
in Figure 1 and as the vectorial quantities nCya /0=∆a and nCya /0=∆y in 
linear optics in Figure 2.  An expression for the deflec-
tion was needed for another study1, and deflection and 
transverse translation provide alternative and relatively 
simple approaches to finding nodal rays and optical axes 
which have been topics of recent research2, 3.  Accord-
ingly the purpose of this note is to derive general ex-
pressions for the deflection and transverse translation 
of a ray across an arbitrary optical system and then to 
show how expressions for nodal rays and the optical 

axis of the system follow directly.
In order to prepare the groundwork for the gen-

eral case we first examine deflection and transverse 
translation in the simpler case of the centred system in 
Gaussian optics.  With the understanding provided by 
this two-dimensional approach we turn to the general 
three-dimensional problem of deflection and trans-
verse translation of a ray through a system that may 
contain astigmatic and relatively decentred elements.  
The optical model is linear optics.  The results are 
then applied to finding nodal rays and optical axes; 
for both nodal rays and optical axes there is no de-
flection and for optical axes the transverse translation 
is simply related to the inclination of the nodal ray 
and the length of the system.  For the basics of Gaus-
sian and linear optics the reader is referred to the text 
by Guillemin and Sternberg4.  For what follows the 
reader is also referred to two recent papers2, 3.
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Gaussian optics

Consider an arbitrary optical system S in Gaussian 
optics (Figure 1).  Z is a longitudinal axis and T0 and 
T are the entrance and exit planes of S.  The indices of 
refraction are 0n  immediately before the system and 
n immediately after it.  Suppose Z coincides with the 
optical axis of the system.  The optical nature of S is 
characterized by the 22×  transference







=

DC
BA

:S  .				            (1)

A is the dilation, B the disjugacy, C the divergence 
and D the divarication of the system; they are four 
fundamental scalar optical properties of the system.  
The dioptric power of S is defined by

CF −=: .					             (2)

It is convenient to develop the analysis in terms of C.  
At any point one may obtain an expression in terms of 
dioptric power F by replacing C by F− .

Figure 1:   Deflection a∆ and transverse translation y∆  of a 
ray through an arbitrary system S in Gaussian optics (two-di-
mensional).  T0 and T are transverse planes a distance z apart and 
orthogonal to longitudinal axis Z; they are the entrance and exit 
planes of S.  R0 is the incident segment of a ray.  It intersects T0 
at  0y  and has inclination 0a .  0R ′  is an extension of  R0 and 
Z′    and Z ′′   are parallel to Z.  The ray emerges at T at the point 
y and with inclination a.  0R ′0R ′  is an extension of R.  The indices 
of refraction immediately before and immediately after system S 
are 0n   and n respectively.  The deflection is given by Equations 
17 and 19 and the transverse translation by Equation 16 and 18.

Now consider a ray through system S.  Its incident 
segment is R0 in Figure 1 and its emergent segment is 
R.    0R ′  and R ′   are extensions of R0 and R respec-
tively.  At T0 segment R0 has transverse position 0y  
and inclination 0a  relative to Z.  The reduced inclina-
tion is

000 : an=α  .					             (3)

Together 0y   and  0α  constitute







α

=
0

0
0

y
ρ  ,					             (4)

the state of the ray at incidence.  We shall refer to 0y  
as the incidence of the ray.

The ray emerges from S at T with transverse posi-
tion y and inclination a.  Its reduced inclination is

na=α : na.					             (5)

The state of the ray at emergence is

 





α

=
y

ρ ,					             (6)

which we shall refer to simply as the emergence of 
the ray.

The emergence and incidence of a ray traversing 
system S are related by

S ρρ =0S .					             (7)

Substituting from Equations 1 and 3 to 6 we obtain 
the pair of scalar equations

 								      
Ay0 + n0 Ba0 = y				            (8)

 
and

Cy0 + n0 Da0 = na.				            (9)

Because of symplecticity the inverse of S exists for 
all systems.  Hence we can rewrite Equation 7 as

0
1 ρρ =−S

 
=� 0.					           (10)
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Now







−

−
=−

AC
BD1S .  				          (11)

Substituting into Equation 10 we obtain
 							     
Dy 00annAaCy =+− nBa = y0  				          (12)

and

         00annAaCy =+−  .				          (13)

We define

0: yyy −=∆
 					          (14)

and

0: aaa −=∆  .   				         (15)

y∆  is the change in position of the ray from incidence 
to emergence relative to longitudinal axis Z; it is the 
transverse translation of the ray.  Similarly a∆  is the 
change in inclination of the ray across the system; it 
is the deflection of the ray. y∆  and a∆  are shown in 
Figure 1.

Substituting from Equation 8 into Equation 14 we 
obtain

 ( ) 0001 BanyAy +−=∆ Ba0.			         (16)

Similarly, substitution from Equation 9 into Equation 
15 results in

( ) 000 1// anDnnCya −+=∆  Cy0 ( ) 000 1// anDnnCya −+=∆  a0.		        (17)

From Equations 12 to 15 we obtain the transverse 
translation and the deflection of a ray in terms of its 
emergent state,

( ) nBayDy +−=∆ 1 				          (18)
and

( )annAnCya 00 /1/ −+=∆  Cy/n0 + (1_nA/n0)a.			         (19)

Equations 16 and 17 give the transverse translation 
and the deflection of the ray in terms of the incident 
state of the ray; Equations 18 and 19 do the same 
except they are in terms of the emergent state of the 
ray.

If the indices before and after the system are the 

same then Equations 17 and 19 reduce to
 								      

( ) 000 1/ aDnCya −+=∆  Cy ( ) 000 1/ aDnCya −+=∆ ) a0 			         (20)

and

( )aAnCya −+=∆ 1/ Cy ( )aAnCya −+=∆ 1/ )a.              		        (21)
	
If the ray is incident parallel to axis Z then 00 =a   

and Equations 16 and 17 become

( ) 01 yAy −=∆ )y0
				                     (22)

and

nCya /0=∆  Cy nCya /0=∆ .					           (23)

Linear optics

Above we looked at the simplest case of transverse 
translation and deflection of a ray in two dimensions 
across a system centred on its optical axis.  We now 
go to the opposite extreme: transverse translation and 
deflection across a system that may be astigmatic and 
with refracting elements not necessarily centred on 
the longitudinal axis.  The situation is represented in 
Figure 2.

Figure 2  Deflection a∆  (given by Equations 40 and 42) 
and transverse translation y∆  (Equations 39 and 41) of a ray 
through an arbitrary system S in linear optics.  This is a three-
dimensional generalization of Figure 1.

Instead of the 22×   transference of Equation 1 we 
now have a  55×  transference6:

00annAaCy =+− Cy
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
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










=

1
:

TT oo
DC

eBA
T π .				          (24)

The dilation, disjugacy, divergence and divarication 
now each become the 22×   submatrices A, B, C and 
D.  e and  are each 12× . They are the six fundamen-
tal properties of the system.  To  is the matrix trans-
pose of the 12×  null matrix o.  The counterpart of 
Equation 2 is

CF −=: ,					           (25)
the dioptric power of the system.

The ray’s incidence ( 15× ) is
















=

1
: 0

0

0 αγ
y  

 						            (26)

where 0y  is the position and 0α  the reduced inclina-
tion of the ray relative to longitudinal axis Z. 0y and

0α are 12× , each consisting of Cartesian coordinates.    
0α is related to the ray’s incident inclination 0a  by  

0α 000 : an=α 	                                                       (27)

where 0n is the index of refraction before the sys-
tem.

Similarly the ray’s emergence is
















α=γ
1

:
y

.							     
			                                             (28)

where the reduced emergent inclination     is related to 
the emergent inclination a by

an=:α .                                                                (29)

The basic equation of linear optics is

γ=γ 0T .					           (30)

Substituting from above one obtains the two matrix 
equations

Ay0 + n0 Ba0 + e = y                                              (31)

and

Cy0 + n0 Da0 + aDaCy nn =++ π000  = na.  			         (32)
Solving Equation 30 for 0γ  one obtains

γ=γ −1
0 T .					           (33)

Because of symplecticity this is always possible.  The 
inverse is



















π−−

π+−−

=−

1TT

TTTT

TTTT

1

oo

AeCAC

BeDBD

T

                     

(34)

as is readily confirmed by direct evaluation of  TT 1−  
and TT 1−TT .  Then Equation 33 results in the pair of 
equations

0
TTTT yBeDaByD =+−− πn

                           (35)
and

00
TTTT aAeCaAyC nn =−++− π .	                  (36)

Corresponding to Equations 14 and 15 we define, 
for a ray, the transverse translation,

0: yyy −=∆ .					           (37)

and the deflection,

0: aaa −=∆ .		                                            (38)

Substituting from Equations 31 and 32 into Equa-
tions 37 and 38 we obtain the transverse translation 
and deflection of the ray in terms of its incidence:

 								      

( ) eBayIAy ++−= 000 n∆ )y( ) eBayIAy ++−= 000 n∆ Ba0 + e                                 (39)
and

( ) nnnn /// 000 π+−+= aIDCya∆ Cy ( ) nnnn /// 000 π+−+= aIDCya∆ )a( ) nnnn /// 000 π+−+= aIDCya∆ .	       (40)

Similarly, from Equations 35 to 38, we obtain the 
transverse translation and deflection in terms of its 
emergence:

( ) eDBaByDIy TTTT +−+−=∆ πn(I( ) eDBaByDIy TTTT +−+−=∆ πn)y( ) eDBaByDIy TTTT +−+−=∆ πn                    (41)
and

( ) ( ) 0
TT

0
T

0
T /// nnnn eCAaAIyCa −+−+=∆ π(I( ) ( ) 0

TT
0

T
0

T /// nnnn eCAaAIyCa −+−+=∆ π)a 

+ (A( ) ( ) 0
TT

0
T

0
T /// nnnn eCAaAIyCa −+−+=∆ π )/( ) ( ) 0

TT
0

T
0

T /// nnnn eCAaAIyCa −+−+=∆ π .		                                (42)
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Equations 39 and 40 are the generalized versions of 
Equations 16 and 17; they give the transverse trans-
lation and deflection of a ray in term of the ray’s in-
cidence.  Equations 41 and 42 generalize Equations 
18 and 19; they are in terms of the ray’s emergence.  
Together Equations 39 to 42 represent the first objec-
tive of this note.

We now consider a few special cases.
If Z coincides with the optical axis of the system 

then e and π  are both null and these equations sim-
plify accordingly.

If the indices of the media before and after the sys-
tem are the same one obtains (from Equations 40 and 
42) the generalizations of Equations 20 and 21:

( ) nn // 00 π+−+=∆ aIDCya Cy ( ) nn // 00 π+−+=∆ aIDCya )a( ) nn // 00 π+−+=∆ aIDCya .		        (43)

and

( ) ( ) 0
TTT

0
T // nn eCAaAIyCa −+−+=∆ π(I( ) ( ) 0

TTT
0

T // nn eCAaAIyCa −+−+=∆ π)a +(A( ) ( ) 0
TTT

0
T // nn eCAaAIyCa −+−+=∆ π )/n0.    (44)

For a ray incident parallel to longitudinal axis Z   
oa =0  and, hence, the transverse translation and de-

flection are

( ) eyIAy +−=∆ 0(A_I)y( ) eyIAy +−=∆ 0                                                (45)

from Equation 39 and

nn //0 π+=∆ Cya Cy nn //0 π+=∆ Cya                                               (46)

from Equation 40.
For thin systems ID = .  If y0 is measured from 

the optical centre of a thin system in air then o=π  
and Equation 43 reduces to Long’s generalization7 
of what is commonly called Prentice’s equation but 
probably better called Imbert’s equation8, 9.

Nodal rays

A nodal ray through a system is one which is not 
deflected, that is, oa =∆  or, equivalently3

aa =0 .					           (47)
Hence, from Equation 40 a nodal ray satisfies

Cy ( ) oaIDCy =+−+ π000 nn )a( ) oaIDCy =+−+ π000 nn .			         (48)

This can be solved to give

( ) π1
0

1
0

−− −−= CaDICy nn )a( ) π1
0

1
0

−− −−= CaDICy nn ,		        (49)

provided C is nonsingular, and

( ) ( )π+−= −
0

1
0 CyDIa nn (Cy( ) ( )π+−= −

0
1

0 CyDIa nn ,			         (50)

provided  DI 0nn −  is nonsingular.  In most cases of 
interest these matrices are nonsingular.  When they 
are singular there may be either no solution or an in-
finity of solutions, exceptional cases that are not ex-
amined here.  The coefficient of a in Equation 49 is 
the negative of the incident nodal characteristic de-
fined elsewhere.3

Equation 49 gives the incident position of a nodal 
ray with inclination a and Equation 50 the inclination 
of the nodal ray incident at 0y .  Corresponding equa-
tions can be obtained in terms of the emergent posi-
tion y from Equation 42.

Optical axis

By definition2 an optical axis is a straight line 
through the system along which a ray both enters and 
leaves the system.  Thus oa =∆  and the optical axis 
is a nodal ray.  Hence Equation 48 holds.  Also

 								      
ay z=∆                                                                 (51)

where z is the length of the system.  Thus, from Equa-
tion 39, one finds that

( ) eBayIAa ++−= 00 nz )y( ) eBayIAa ++−= 00 nz Ba + e.			         (52)
Equations 48 and 52 can be written

( ) ( ) eaIByIA −=−+− zn00)y( ) ( ) eaIByIA −=−+− zn00 )a( ) ( ) eaIByIA −=−+− zn00 			        (53)
and

Cy ( ) π−=−+ aIDCy nn00 )a( ) π−=−+ aIDCy nn00 .			         (54)
These two equations can be combined as the single 
matrix equation

0 0

0

n z
n n

    − −       =−         − π    

A I B I y e
C D I a  	                   (55)

obtained before2 by a different method.  As before we 
put

 





−
−−

=
IDC
IBIA

P
nn
zn

0

0: .			        (56)

Also putting
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 









=

a
yd 0: 	                                                      (57)

and







=

π
δ

e
: 							     

			                                            (58)
we rewrite Equation 55 as
Pd δ−=Pd .					          (59)

Provided P is nonsingular

δ1−−= Pd ,					          (60)

the result obtained before2 but by a simpler method.  
For most systems of interest P is nonsingular.5  d 
(Equation 57) gives the position 0y of the optical axis 
in the entrance plane T0 of the system and a the incli-
nation of the optical axis.

Concluding remarks

Given the transference of an optical system Equa-
tions 40 and 42 allow one to calculate the deflection 
of a ray traversing the system; Equation 40 gives the 
deflection in terms of the position and inclination of 
the ray at incidence and Equation 42 gives in terms of 
the position and inclination at emergence.  The equa-
tions are general and, within the limitations of linear 
optics, hold for all optical systems whether or not they 
contain astigmatic and relatively decentred refracting 
elements.  The same holds with respect to transverse 
translation and Equations 39 and 41.

Equations 43 to 46 specialize these results for par-
ticular situations.

Equations governing nodal rays (Equations 48 to 
50) arise naturally from the analysis because nodal 
rays are not deflected.

Equations governing the optical axis of a system 
(Equations 59 and 60) also arise naturally, and more 
simply than before2, because an optical axis is that 
particular nodal ray which enters and leaves the sys-
tem on the same straight line.
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