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Abstract

It is generally supposed that thin systems, includ-
ing refracting surfaces and thin lenses, have pow-
ers that are necessarily symmetric.  In other words 
they have powers which can be represented as sym-
metric dioptric power matrices and in the familar 
spherocylindrical form used in optometry and oph-
thalmology.  This paper shows that this is not cor-
rect and that it is indeed possible for a thin system 
to have a power that is not symmetric and which 
cannot be expressed in spherocylindrical form.  
Thin systems of asymmetric power are illustrated 

by means of a thin lens that is modelled with small 
prisms and is chosen to have a dioptric power ma-
trix that is antisymmetric.  Similar models can be 
devised for a thin system whose dioptric power ma-
trix is any 2 2×  matrix.  Thus any power, symmet-
ric, asymmetric or antisymmetric, is possible for a 
thin system.  In this sense our understanding of the 
power of thin systems is now complete.

Key words: dioptric power matrix, symmetric 
power, asymmetric power, antisymmetric power, 
prism

Introduction

It is generally believed that it is not possible for a 
refracting surface, a thin lens or any other thin sys-
tem to have a dioptric power that is asymmetric.  The 
purpose of this paper is to challenge that belief and 
describe thin systems which do, indeed, have asym-
metric powers.

	 We begin by defining symmetric powers in 
terms of the symmetric dioptric power matrix and tra-
ditional ways of representing such powers in optom-
etry.  We then examine asymmetric powers (they have 
no counterpart in traditional optometric or ophthal-
mological thought) for lenses that are thick.  Fick’s 
and Long’s generalization of Prentice’s equation for 

prismatic effect is then used to model a thin lens of a 
particular asymmetric power.  This shows that asym-
metric powers are possible for thin systems in gen-
eral.  We show the effect of a thin lens of a particular 
asymmetric power on rays traversing it.  Finally we 
touch on possible areas for future research

Symmetric powers

Traditionally powers in optometry and ophthal-
mology are expressed in three common ways, sphe-
rocylindrical, for example, 3 2 40− ×  and 1 2 130×  
principal meridional,  for example { } { }3 40 1 130 , and 
crossed cylindrical, for example 1 40 3 130× × .  The 
principal meridians (represented by the 40 and 130) 

,
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are at right angles.  All four of these quantitative rep-
resentations mean exactly the same thing; they mean 
the power expressed as the dioptric power matrix

2.174 0.985
0.985 1.826
  =   

F   D.			   (1)

This matrix representation of power, and the method 
of obtaining it from the spherocylindrical power, was 
first presented by Fick1, as was pointed out by Diepes 
and Blendowske2, 3.  It was later and independently 
pointed out by Long4.  In general the dioptric power 
matrix has the form

11 12

21 22

f f
f f
  =   

F   D				    (2)

in which the off-diagonal entries, 12f  and 21f , are 
necessarily equal and, so, F is necessarily a symmet-
ric matrix.  Every power expressed in any of the tra-
ditional forms described above can be represented as 
a symmetric dioptric power matrix.  (The reverse is 
also true.)  Hence, because they all have representa-
tions as symmetric dioptric power matrices, all tradi-
tional powers can be described as symmetric powers.

Asymmetric powers

Formally a matrix F is symmetric if T =F F  where  
TF is the matrix transpose of F.  This is equivalent for 

2 2×  matrices to the statement that the off-diagonal 
entries of F are equal.  A matrix that is not symmetric 
is called asymmetric; its off-diagonal entries differ.  If   

T =−F F then F is called antisymmetric; its off-diago-
nal entries are equal in magnitude but opposite in sign 
and its diagonal entries are zeros.  With the exception 
of null power (plano) all antisymmetric powers are 
also asymmetric.  (Null power is both symmetric and 
antisymmetric but not asymmetric.  Antisymmetric 
matrices are also called skew-symmetric.  For more 
on these matrices the reader is referred elsewhere.5)

The very structure of the dioptric power matrix, 
with its four entries (Equations 1 and 2), hints at the 
possibility that there may be a whole new class of 
non-traditional powers that are unrecognized in op-
tometry and ophthalmology, a class of powers for 
which 12 21f f≠ .  If they existed they would have 

asymmetric dioptric power matrices.  In other words 
they would have asymmetric powers.  To represent 
them one would necessarily require, in general, four 
distinct numbers; three distinct numbers that are suffi-
cient for traditional powers (for example, sphere, cyl-
inder and axis in the spherocylindrical forms) would 
not be sufficient for representing such powers.

	 The first asymmetric powers were described 
by Fick6 and later by Keating7, 8, but these were only 
for thick lenses.  Thin systems had powers that were 
necessarily symmetric.  A thick bitoric lens of reduced 
thicknessτ and first- and second-surface powers 1F
and 2F has power6-8

1 2 2 1= + −τF F F F F  .			   (3)

(In keeping with common practice Keating called such 
powers equivalent powers.  The term is redundant, 
however, and such powers are preferably referred to 
simply as powers9.)  While 1F  and 2F  are traditional 
powers, that is, they are symmetric, the product 2F 1F   in 
Equation 3 is not symmetric in general.  Thus asym-
metric powers are possible for thick lenses.  But what 
about thin lenses?  For a thin lens one sets 0τ=  and 
Equation 3 becomes

1 2= +F F F  .					     (4)

Since the sum of symmetric matrices is symmetric it 
would seem that the power F of a thin lens is neces-
sarily symmetric.

Prism models of thin lenses

Ordinary stigmatic (spherical) thin lenses are of-
ten thought of in terms of prisms.  Figure 1 shows an 
example.  The biconvex lens is represented in cross-
section as eight prisms whose apical angles increase 
in magnitude from zero in the centre to a maximum 
at the periphery.  The base-to-apex direction is ra-
dial and outward from the centre.  The combination 
of prisms better approximates the lens the greater the 
number of component prisms and the smaller their 
size.  Rays through the lens are deflected radially in-
ward.  (This assumes that the index of refraction of 
the lens is greater than the index of the surrounding 
medium.  For the purposes of this paper we shall take 
the surrounding medium as air.  The conclusions hold 
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with appropriate modification for any mediums.)  The 
deflection (or prismatic effect) can be calculated by 
means of Prentice’s well-known equation.  (A case 
can be made for the equation to be renamed Imbert’s 
equation.10-12)

(a) (b)

Figure 1.  Cross-section of a lens (a) modeled in terms of prisms 
(b).

Fick’s13 and Long’s4 generalization (Equation 5) of 
Prentice’s equation is not restricted to spherical lenses 
but holds for all symmetric (spherical, cylindrical and 
spherocylindrical) powers.  Consider a point P on a 
thin lens of (symmetric) power F and optical centre 
O (Figure 2).  Let P have position vector y relative 
to O.  A ray traversing the lens at P has deflection p 
given by

=−p Fy ,					     (5)

the generalized form of Prentice’s equation.  The same 
equation is given by Campbell.14, 15  In the neighbour-
hood of point P the lens behaves as a small prism with 
apex-to-base direction the same as the direction of p 
and whose deflection is given by p, the magnitude of 
p.  The prism’s apical angle b is given simply by

( )0/b p n n= −            		              (6)

where n and 0n  are the indices of refraction of the 
prism and the surrounding medium respectively.

We can imagine approximating a lens of any given 
dioptric power F by putting together small prisms 
whose geometry and orientation at each point is de-
fined by Equations 5 and 6.  Alternatively we can im-
agine building up any thin lens by laying out an array 
of small prisms of the appropriate apical angle and 
orientation.  That we could do for any given symmet-
ric power F.  But there is no reason why we should 

not be able to do the same for any given asymmetric 
matrix F as well.

1y

y

p

P

O

2y
1p

2p

Figure 2. A thin lens is viewed along its axis.  Point P on a thin 
lens has position vector y with respect to the optical centre O of 
the lens.  It has horizontal and vertical components y1 and y2 re-
spectively.  The deflection or prismatic effect at P is represented 
by vector p with components p1  and p2.  In particular a ray paral-
lel to the longitudinal axis would emerge with inclination p.  In 
Figure 4 p is perpendicular to y and points in a clockwise sense 
about O.

A thin lens of antisymmetric power

Consider the power

=−F L  D					   

where

0 1
:

1 0
  =  − 

L
 .				 

(We note that L is the negative of the matrix repre-
sented by L in recent papers16-18.  This makes L the 
same matrix as used in the definition of 2 2×  sym-
plectic and Hamiltonian matrices and brings it in line 
with usage elsewhere9, 14, 15, 19.)  Because matrix L is 
antisymmetric F is an antisymmetric power.  Let us 
suppose a thin lens of that power could be made.  We 
think of building the lens up of many small square 
prisms (Figure 3).  (There is no requirement that the 
prisms be square; squares are chosen merely for con-
venience of illustration.  For any practical realization 
of the lens it is quite possible that other geometries 
would be preferable.)  From Equation 5 we see that 
a prism with centre at a point with position vector y 
must have deflection

(7)

(8)
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1

2

0 1
1 0

y
y
  −  =−       

p
 ,				  

that is,

2

1

y
y

  =  − 
p

 ,	
				  
where the components of y are in metres.  Equation 
10 shows that the deflection has a direction that is   
clockwise from y.  Thus the apex-to-base directions 
of all the prisms must be arranged circumferentially 
and clockwise as represented symbolically in Figure 
3.  The magnitudes of the apical angles grow linearly 
outwards from the centre as is directly evident from 
Equation 5; this is also represented symbolically in 
Figure 3 by means of bars (for the bases) of increas-
ing thickness.

Figure 3  An array of small square prisms making up a square 
lens of divergence L D and dioptric power−L D.  There are 
three marks on each prism: a dot marks the geometrical centre, a 
short line segment marks the direction of the apex and a longer 
line segment represents the base.  The central square represents 
a prism of zero apical angle.  The apical angle increases linearly 
with distance from the centre as represented symbolically by line 
segments of increasing thickness.  The apex-to-base direction is 
circumferential and clockwise.  Squares and their particular ar-
rangement are chosen for illustrative purposes; other shapes and 
arrays are perfectly possible and are likely to be preferable in 
any actual realization of the lens.

Rays through a thin lens of antisymmetric power

We suppose now that parallel rays are incident 

perpendicularly onto this side of the putative lens at 
the dots in Figure 3.  They emerge from the lens on 
the other side with the twisted appearance shown in 
Figure 4.  Following the rays downstream we see that 
they splay outward as they twist.  The same happens 
if we follow the projections of these rays in the up-
stream direction (not shown in the figure).  No point 
or line focus is formed anywhere, either as a real fo-
cus downstream or a virtual focus upstream.  Figure 
4 is the same as illustrated by Campbell14 for a thick 
system (see his Figure 6) and described as one that 
‘cannot be realized by a surface or a lens’.  Camp-
bell’s statement holds for smooth surfaces; the lens of 
Figure 3 has a rough surface.  The arrows represent a 
vector field14. 

Figure 4 Rays traversing the lens of Figure 3.  The dots in the 
centres of the squares represent incident ray segments orthogo-
nal to and on this side of the lens.  The arrows represent the 
emergent segments on the other side of the lens.  The emergent 
segments exhibit a clockwise swirling pattern as one travels with 
the light.  The central dot represents the optical axis.  The chi-
rality is reversed in the case of a thin lens of power L D.  The 
arrows can also be viewed as constituting a vector field.

A deflected but untwisted beam of light with a con-
stant square cross-section emerges from each small 
prism.   The central beam is undeflected.   Figure 5 
shows successive cross-sections downstream from 
the lens.   The differing deflections cause the indi-
vidual component beams gradually to part company, 
as one follows them downstream, leaving light-free 
gaps in between.  The result is a twisted composite 

.
(10)

(9)
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beam made up of untwisted and gradually separating 
component beams as shown from (a) to (d) in Figure 
5.  In (c) the composite beam has twisted clockwise 
through 45°  and the dark spaces between the com-
ponent beams have grown to form a checkerboard 
pattern.  The blue square moves horizontally to the 
right; the orange square moves vertically downward; 
and the green square moves right and down.  A pho-
tograph of a simple model is shown in Figure 6 al-
though the deflections have been exaggerated.

Let us suppose that the square lens in Figure 3 has 
a side of length 70 mm, is made of plastic with in-
dex 1.5 and is in air.  The individual prisms then have 
sides of length 10 mm.  Consider first the first prism 
to the right of the central one; it is the prism that trans-
mits the beam shown orange in Figure 5.  According 
to Equation 10 it deflects the light by

0
0.01

  =  − 
p

 ,

that is, by 0.01 downward.  That is equivalent to 1 
prism dioptre (pd) or about 0.57° .  The apical angle 
of the prism is about 1.1° (Equation 6).  The base is 
down.  The same figures apply to the other three prisms 
adjacent to the central one except that the base direc-
tions are as shown in Figure 3.  Doubling these num-
bers gives the properties of the second prism to the 
right of the central one; multiplying them by 3 gives 
the properties of the third prism to the right.  Thus 
the apical angle increases outwards from the centre 
along the middle row, and along the middle column, 
approximately as follows: 1.1°  , 2.3°  and 3.4° .  It 
follows from these numbers that Figure 5(b) repre-
sents the cross-section of the compound beam in a 
transverse plane that is 0.5 m beyond the lens; (c) and 
(d) are cross-sections at 1.0 and 1.5 m respectively.  
(Instead of a length of 1.5 m the box in Figure 6 has a 
length of about 30 cm.  Thus the angles in Figure 6 are 
exaggerated by the factor about 5.  Alternatively one 
can regard the figure as a representation of the rays 
downstream from a thin lens of power approximate-
ly 5− L D when the rays incident onto the thin lens 
are all perpendicular to it.)  For every square of light 
in Figure 5(b) there is a dark square that is a quarter 
of its area.  Thus the area of the cross-section of the 
compound beam has expanded by a factor of about 5

4
Similarly one sees that the area of the cross-section in 
(c) has enlarged by a factor of about 8

4  (double) and 

in (d) by a factor of about 13
4 .  The square roots of 

these numbers give the length of the side of the square 
cross-section of the beam at each transverse plane.

Lenses of any power, symmetric or asymmetric

It is perfectly possible to construct an array of 
prisms of the sort we have been examining.  And it 
is apparent that the array would model a thin lens of 
power –L D; it does to light, at least approximately, 
what a thin lens of the power concerned would do to 
light.  In the same way one could model a thin lens 
of power F where F is any 2 2×  matrix.  The model 
would improve as the number of prisms increased 
and their size decreased although effects in physical 
optics would impose the practical limitation that the 
size of the prisms should not be very much less than a 
millimeter.  The lens would have a rough surface and 
could not be polished smooth.  The optical quality of 
the lens could not be as good as in the case of a con-
ventional lens but one expects that it might approach 
that of a Fresnel lens.

The power (–L D) used here to illustrate the ar-
gument was chosen because, being antisymmetric, it 
represents a particular asymmetric power that could 
not be further from being symmetric.  It corresponds 
in particular to a divergence of L D and results in a 
right-handed twist to the bundle of rays traversing 
the lens.  (Divergence is the negative of dioptric 
power.9, 20)  L D is the building block, as it were, that 
makes asymmetric powers asymmetric.  In a sense it 
is the unit of what is responsible for asymmetry.  It 
differs from the divergence of conventional lenses by 
as much as is possible.  This is made clear if we ex-
pand the power F as9, 14, 18

I J K L I J K LF F F F F F F F= + + + = + + +F I J K LF I J K L			   (11)

where

1 0
:

0 1
  =   

I
 ,					   

is an identity matrix,
1 0

:
0 1
  =   − 

J  ,					     (13)

0 1
:

1 0
  =   

K
	

(12)

(14)
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and L is defined by Equation 8.  I, J, K and L units 
represent an orthonormal basis for dioptric power.  
Equation 11 can be written19

 								      
symm antisymm= +F F F 	 			   (15)

where
 

symm I J K: F F F= + +F I J K  		  	 (16)

and

antisymm L: F=F L  .				    (17)

Traditional powers, being all symmetric, have a null 
antisymmetric component.  Antisymmetric powers 
have a null symmetric component.

The power –L D used in the illustration here im-
plies L 1F =− D.  Clearly any antisymmetric power 
could be obtained simply by scaling up the apical an-
gles of the prisms accordingly and possibly reversing 
the apex-to-base direction.  It follows from Equation 
15 that one could model a thin lens of any power with 
the symmetric component on one surface and the 
antisymmetric component on the other; one surface 
could be conventional (toric or spherical, say) and the 
other Fresnel-like.

Concluding remarks

The traditional view of dioptric power is that it is 
a concept with three degrees of freedom.  This is ex-
emplified by the three numbers (sphere, cylinder and 
axis) required to specify a power in the usual sphero-
cylindrical representation.  The mathematical struc-
ture of the concept (the 2 2×  dioptric power matrix), 
however, hints that the concept should really have 
four degrees of freedom.  This paper has shown how 
that can be the case for a thin system (the four coef-
ficients in Equation 11 for example).

It is indeed possible to have a thin system whose 
dioptric power is not of the conventional kind, and 
that the power can be asymmetric.  It is the fourth 
term in Equation 11 that is responsible for the asym-
metry.  Such powers have dioptric power matrices in 
which the off-diagonal entries differ and they cannot 
be expressed in spherocylindrical form.  (They can, if 
a fourth term is added.19)  In fact a thin system may 

(c)

(b)

(d)

(a)

Figure 5 Each small prism with its square aperture (a), except the 
central one, defines a deflected beam of light with the same square 
cross-section.  The beam defined by the central prism is undeflected.  
Deflection moves the cross-sections away from each other opening 
up gaps in which there is no light as shown in successive transverse 
planes (b) 0.5 m, (c) 1.0 m and (d) 1.5 m downstream from the 
lens.  The pattern as a whole retains a square cross-section that turns 
clockwise and enlarges as one follows the light downstream.  In (c) 
it has rotated 45°   clockwise relative to the lens.  The individual 
squares of light that make up the pattern are themselves not twisted.  
The blue square moves to the right; the orange square moves down-
ward; and green square moves right and down.

(a)

(b)

(c)

(d)



S Afr Optom 2009 68(2) 52-60	        Harris WF, van Gool RD - Thin lenses of asymmetric power

The South African Optometrist
58

have any 2 2×  matrix as dioptric power matrix.  The 
particular example used in this paper is that of a thin 
lens of antisymmetric power, a particular asymmet-
ric power with null symmetric component.  It differs 
from a conventional symmetric power as much as 
any power can.  It is the purest form of powers of 
this non-traditional class.  In general a thin system of 
asymmetric power has a symmetric (traditional) and 
an antisymmetric part (Equation 15).  In a sense its 
power would lie between the two extremes of sym-
metric power and antisymmetric power.

Although we have thought here largely in terms of 
lenses one can readily apply the same thinking to a 
single refracting surface as well.

There is nothing special here about square prisms 
or their arrangement (Figure 3) or the dark patches 
that arise behind the asymmetric lens described here 
(in Figure 5(b) to (d) for example).  Any lens mod-
elled with small prisms will result in dark patches or 
overlapping patches of light downstream; the pattern 
depends on the nature of the prisms and their arrange-
ment.  The fact that we have used a square array of 
prisms is merely because they seem best able to il-
lustrate the issues.  Other geometries and other arrays 
are perfectly possible.  In fact considerations of sym-
metry suggest that squares would not be the best for 
a practical realization of the lens.  Fundamentally all 
meridians are equivalent.  They all have the same tor-
sion21-23 and no curvature, in contrast to spherical sur-
faces in which all meridians have the same curvature 
but no torsion.  Like spherical surfaces there is invari-
ance under rotation about the optical axis.  In contrast 
to conventional refracting surfaces there are no (real) 
principal meridians.

Nor is there anything special about twisted rays.  
They are a feature of traditional spherocylindrical 
lenses.21-23

A model of a lens has been constructed here by us-
ing Frick’s generalization (Equation 5) of Prentice’s 
(or Imbert’s) equation.  Thus Prentice’s equation 
necessarily applies to lenses of asymmetric power 
as well.  In other words we have generalized Fick’s 
generalization13 of Prentice’s equation still further: it 
holds for all thin systems, including those with asym-
metric dioptric powers.

The thinking behind this paper has been in terms 
of the fundamental property divergence9, 20 C rather 
than in terms of the derived property dioptric power 
F.  (One is merely the negative of the other.)  How-
ever, because of its greater familiarity, we have cho-
sen to present the material in terms of dioptric power 
instead.  This accounts for our use of the power  –L D.  
The divergence is L D and the lens gives the bundle 
of rays traversing it a right-handed twist.  For a thin 
lens of power L D the twist beyond the lens would be 
left handed.

‘Linear optics is an approximation to geometrical 
optics which is valid when the various angles that en-
ter into consideration are small.’24  Geometrical optics 
‘is valid whenever the dimensions of the various aper-
tures are very large when compared to the wavelength 
of the light and when we do not examine too closely 
what is happening in the neighborhood of shadows 
or foci.’24  This paper uses small prisms to make up 
the lens, each prism having an aperture much larger 
than the wavelength of the light.  The paper does ‘not 
examine too closely what is happening in the neigh-
borhood of shadows or foci.’  Furthermore the angles 
involved are small.  Hence our model satisfies the re-
quirements demanded by linear optics..

However, by their very nature thin lenses of asym-
metric (or symmetric) power constructed in the way 
described above are unlikely to approach convention-
al lenses in optical quality.  They might approach the 
quality of Fresnel lenses.  On the other hand asym-
metric powers may turn out to be realizable in other 
ways, possibly with the use of future materials.

Power, for systems that are thick or thin, can now 
be recognized fundamentally as a concept with four 
degrees of freedom.  The last term in Equation 11 is 
null in the case of conventional powers and only three 
degrees of freedom remain, the first three terms on 
the right-hand side of Equation 11.  More than that, 
though, all of the degrees of freedom are accounted 
for, and, in a sense, our understanding of the concept 
of dioptric power is now complete.

Although we have shown here that lenses of asym-
metric power are a conceptual possibility it remains to 
be seen whether they are of any practical significance.  
There is much obvious scope for further research.
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