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Introduction

In conventional usage magnification means a pro-
portional increase in size that is equal in all directions.  
It is represented by a scalar.  Transverse magnifica-
tion, for example, in Gaussian optics, can be written
mh = hhmh ′= .             (1)
The magnification m magnifies the height h of an ob-
ject to the height h′ of its image.  In the presence of 
astigmatism, however, the transformation is usually 
much more complicated and may involve changes 
not usually described as magnification.  There may 
be conventional magnification but it can be accom-
panied by other changes in form and orientation.  The 
natural generalization of the concept of magnification 
in linear optics is provided by the equation
Xx = y.             (2)

The 22×  real matrix X, with its four entries, operates 
on the 12×  matrix x to form the 12×  matrix y.  x and 
y may be vectors with horizontal and vertical com-
ponents.  X magnifies x to y in a generalized sense 
and X is the generalized magnification.  Generalized 
magnification in this sense was the topic of Part 1 of 
this paper1.

In the sense used before1 generalized magnification 
is equivalent to what is called a linear transforma-
tion in linear algebra and, so, is appropriately termed 
linear magnification.  In a sense, though, this general-
ized magnification is not quite complete: it accounts 
for change in size, shape and orientation but it takes 
no account of change in position.  The purpose of 
this part is to show that we can take advantage of the 
mathematical structure to complete the concept of 
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magnification in a natural way so that it now accounts 
for changes in size, shape and orientation and for 
change in position as well.  Magnification becomes 
generalized still further.  In a process essentially the 
same as the expansion of the 44×  transference to a 

55×  transference by the addition of a fifth row and 
fifth column2, 3 the matrix representing the magnifica-
tion expands from 22×  to 33×  with two additional 
entries in the third column and a dummy third row.  
The operation of magnification is equivalent to what 
is known as an affine transformation in linear algebra; 
accordingly we can distinguish it as affine magnifica-
tion.  We may also distinguish linear and affine mag-
nifications as 22×  and 33×  magnifications.

How far can this process go?  Could we find yet 
further useful generalizations?  Towards the end of 
this paper we shall argue that the answer could be Yes 
or No.  One hyper-generalization we know already; 
if we are willing to call it a magnification, then we 
answer Yes.  But for most applications of interest in 
optometry the generalized magnification of the type 
treated here appears to be complete.

Affine magnification

An affine transformation transforms a vector x to a 
second vector y according to4

Xx ydXx =+              (3)
where d is a 12×  real matrix.  Consider the following 

33×  matrix:







=

1To
dX

Y
             (4)

where X and d are as defined.  o is the 12×  null vec-
tor and oT its matrix transpose.  We think of Y as X 
augmented by a third column (containing d) and a 
dummy bottom row.  We also define the 13×  matri-
ces







=

1
x

u
             

(5)

and







=

1
y

v .                                 (6)

If we perform the block product Yu we obtain two 
equations: Equation 3 and the trivial equation 11 = .  
In fact we have
Yu = v .             (7)
In effect we have transformed Equation 3 into an 
equation, Equation 7, which looks very much like 
Equation 2.
 We can think of matrix Y as a kind of magnification 
that magnifies u to v.  u and v are really just the origi-
nal x and y augmented by a dummy 1 in the third row 
that is there only so that matrix multiplication works.  
Y is the generalized magnification X of Part 1 gener-
alized still further; Y represents affine magnification, 
X linear magnification.  What was said before1 still 
holds; what is new in affine magnification is vector d 
in the third column.

Before we look at the physical meaning of affine 
magnification we take a quick look at successive af-
fine magnification.

Successive affine magnification

Consider two affine magnifications,







=

1T
11

1 o
dX

Y              (8)

and Y2 defined similarly.  Suppose a vector u is first 
subjected to magnification Y1 and the result to magni-
fication Y2.  According to Equation 7 the result of the 
first magnification is
Y1u = v             (9)
and, again according to Equation 7, the result of the 
second magnification is
Y2v = w .           (10)
Substituting from Equation 9 into Equation 10 we ob-
tain
Y2Y1u = w.           (11)
We write this as
Yu = w                       (12)
where
Y2Y1 = Y .           (13)

Equation 12 is Equation 7 again but applied to mag-
nification of u to w.  It follows that successive affine 
magnification by Y1 and then by Y2 is equivalent to 
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the single magnification Y defined by Equation 13.  
With more successive magnifications one finds that

YYYY =123 .          (14)
This pattern of successive affine magnifications 

being represented as matrix multiplication in reverse 
repeats that for successive linear magnifications and 
echoes what happens with transferences of optical 
systems in order2, 3.

Again, because matrix multiplication does not 
commute, one sees from Equation 14 that the order of 
affine magnifications matters.

Linear magnifications as affine magnifications

Suppose







=

1To
oX

Y .          (15)

This represents an affine magnification with d = o .  
In this case Equation 7, and equivalent Equation 3, 
reduce to Equation 2.  In other words affine magnifi-
cations that happen to have d = o are linear magnifi-
cations.  Linear magnifications are affine.  The con-
verse, however, is not true.  Linear magnifications are 
a subset of affine magnifications.

Linear magnifications are responsible for a variety 
of magnifications, distortions, rotations, et cetera, as 
described1 in Part 1. They can be decomposed into 
successive components as described before1.

Transverse translations as affine magnifications

Suppose now that







=

1To
dI

Y .          (16)

Then
         
X = I                                            (17)

where I is an identity matrix.  Equations 7 and 3 be-
come

ydx =+ .          (18)
Thus magnification of this type merely adds a fixed 
vector d to every vector x to get vector y.  In oth-
er words all points get shifted sideways by vector 

d.  More formally we say that the magnification is a 
transverse translation by d.

In conventional usage a sideways displacement 
would not usually be regarded as a magnification.  
But it does represent a change in appearance of the 
image relative to the object and becomes a magnifica-
tion in this generalized affine sense.

Affine magnification as combination of linear mag-
nification and translation

Y of Equation 15 is a linear magnification and Y of 
Equation 16 is a transverse translation.  One can think 
of them as basic affine magnifications.

Suppose a linear magnification is followed by a 
transverse translation.  Then, according to Equation 
13
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111 TTT o
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o
oX

o
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If one reverses the order then one finds that there is a 
change in the third column:







=











111 TTT o

XdX
o

dI
o

oX
.       (20)

In the light of Equation 13 Equation 19 tells us that 

we can interpret any affine magnification
 







1To
dX

  
as a linear magnification X followed by a transverse 
translation d.  Linear transformation, treated in detail 
in Part 11, changes shape, size and orientation.  By 
packaging transverse translation d into affine magni-
fication Y, together with linear magnification X, we 
are now thinking of the transverse translation as part 
of the generalized magnification.

If we want to interpret
 







1To
dX

 
as a transverse 

translation followed by a linear magnification then 
Equation 20 shows that the linear magnification would 
again be X but the transverse translation would have 
d replaced by

dXd 1−=′ .           (21)
This interpretation is possible if the linear magnifi-
cation X is nonsingular.  If X is singular one has no 
option but to interpret transverse translation as occur-
ring after linear magnification.

Xd
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Some examples

We consider here some specific examples of aff-
ine magnification.  We begin with some special affine 
magnifications.

The magnification







=

1T1 o
oO

Y           (22)

operates on
 







=

1
x

u
 
to produce 





=

1
o

v .
  

There is
 

linear magnification to nothing followed by no trans-
verse translation.  In other words every vector x is 
reduced to the null vector (y = o) as shown in Figure 
1(a).  The same holds for every point of an object.  
Thus affine magnification by Y1 reduces all objects to 
an image consisting of a single point at the origin as 
in Figure 1(b).
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Figure 1  Affine magnification by Y1 defined by Equation 22.  
(a) Vector x is reduced to a null vector.  (b) The same happens 
to all points of the object resulting in the image being a point at 
the origin.
 

1Y  

2Y  
d 

3Y  

3Y  P 

Figure 2  Affine magnification by Y2 defined by Equation 23.  
The image of the object is the point at P. Y2 is equivalent to af-
fine magnification by Y1 followed by affine magnification Y3 
which is merely translation by d.  If  Y3 acts first then the object 
is displace by d without change in shape, size or orientation;   Y1 

then shrinks the object to a point at the origin.
 

The affine magnification
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          (23)

differs from Y1 in that instead of being null d is now







=

10
2

d
 
.           (24)

d is shown in Figure 2.  Affine magnification by Y2 
can be thought of as null linear magnification fol-
lowed by translation d (Figure 2).  In effect it reduces 
the object to a point at the origin and then displaces 
the point by d. Y2 , then, is Y1 followed by 
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3Y .         (25)

(The reader might wish to confirm that Y3 Y1 = Y2 .)
Notice the difference if we reverse the order from   

Y3 Y1  to Y1 Y3 .  Affine magnification by Y3 is a trans-
verse displacement of the object up and to the right by 
d as shown in Figure 2.  Because the linear magnifica-
tion involved in that step is X = I  (it is identity linear 
magnification), there is no change in shape, size or 
orientation.  Then affine magnification by Y1 reduces 
everything to a point at the origin.  Thus Y1 Y3 = Y1 .

Consider the affine magnification
















−=

100
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4Y  .          (26)

The top-left linear block







−

=
11

31
4X            (27)

represents the same linear magnification illustrated in 
Figure 2 of Part 11.  Figure 3 illustrates the effect of 
Y4 in converting object O to image I.  It can be in-
terpreted as linear magnification by X4 followed by 
transverse translation
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3
1

4d
                                          

  (28)

or, equivalently, affine magnification by
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4
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(29)

followed by affine magnification

10

10

10



S Afr Optom 2010 69(4) 166-172                               WF Harris - Generalized magnification in visual optics.  Part 2: Magnification as affine transformation

The South African Optometrist          ISSN 0378-9411
170







=

1T
4

6 o
dI

Y .          (30)

The steps are illustrated in Figure 3. Y5 magnifies ob-
ject O to the intermediate image I1  represented by the 
dashed line and then Y6 displaces the result by d4 .

Because X4 is nonsingular it is also possible to 
regard Y4 as a transverse translation followed by a 
linear magnification.  According to Equation 21 the 
transverse translation is






 ′
=

1T
4

7 o
dI

Y

                                                  

(31)

where







−

=′
5.0

5.2
4d .           (32)

The linear magnification is Y5.  The first step results 
in intermediate image I2 (dotted in Figure 3); and the 
second step converts I2 to I.  Figure 3 illustrates the 
fact that the translations involved are not generally 
the same if the order of the operations is reversed.
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Figure 3  Affine magnification of object O by Y4  (Equation 26) 
to image I.  It is equivalent to magnification by Y5  (Equation 29) 
to intermediate image I1 followed by magnification Y6 (Equation 
30) to I.  It is also equivalent to magnification by Y7 (Equation 
31) to I2 followed by magnification by Y5 to I.
 
Magnification and transference

Before concluding we briefly comment on the re-
lationship between generalized magnification and the 

ray transference.
The basic equation of linear optics is1-3

γγ =0T                                             (33)

where T is the 55×  transference of a system. 0γ  and 
γ represent the state of a ray at incidence onto and 
emergence from the system respectively.  The ma-
trices have dummy bottom rows as shown explicitly 
when Equation 33 is written in the form







=











111

0
T

ρρδ
o
S

.         (34)

These two equations have the same forms as in Equa-
tions 7 and 4 respectively.  So one can regard T as 
an affine magnification of the states of rays across 
the system and think of it as linear magnification S 
of the states of the rays followed by their transverse 
translation by δ .  The displacements are in a four-di-
mensional space, however, as opposed to the two-di-
mensional displacements we have been talking about 
above.  

Equation 34 is often split into two equations
Ay yeBAy =++ 00 α                                            (35)
and
Cy απα =++ 00 DCy  .          (36)

Suppose we are dealing with a situation in which 

all rays entering the system are parallel.  Then 0α  is 

constant.  Further eB +0α  is a constant 12× matrix.  
Equation 34 can, therefore, be written as
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Thus
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(38)

represents an affine magnification of the transverse 
positions of parallel incident rays to their emergent 
positions.  It would apply, for example, to an eye of 
ametropia A viewing a distant point object and relate 
positions on the cornea to the shape, size, orientation 
and location of the blur patch on the retina.  Then   YA 
would be a kind of augmented ametropia A that char-
acterizes image blur and location.

Similarly one can also write
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and
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Thus we have an affine magnification defined for 
each of the fundamental properties A, B, C and D.  
They are augmented forms of the fundamental prop-
erties.  Equation 41 represents affine magnification of 
reduced inclination of rays across the system.  Equa-
tions 39 and 40 represent cross magnifications from 
reduced inclination to transverse position and trans-
verse position to reduced inclination respectively.  
Equation 40 is, in fact, a further generalization of Im-
bert’s equation5, the equation commonly called Pren-
tice’s equation5-7.

The four augmented fundamental properties YA,  
YB, YC and YD are affine magnifications of aspects of 
the state of a ray across a system.  In a sense they are 
all wrapped up in the global affine magnification, the 
transference T, which represents affine magnification 
of the state of the ray as a whole.

While it may be useful to think in terms of 55×  af-
fine magnifications like T , and, perhaps, even those 
with more rows and columns, many optometric ap-
plications concern mappings between surfaces: object 
plane, corneal plane, iridial plane and retinal plane.  
In such cases 33×  affine magnifications are as far as 
one need to go.  And they are complete because they 
account for change in form, size, orientation and loca-
tion of image in two dimensions.

Concluding remarks

Magnification, as generalized in Part 11, is simply 
a linear transformation.  It is represented by a 22×  
matrix X.  Its effect is to change the appearance of the 
object without regard to its position.  The resulting 
image may be magnified, perhaps differently in dif-
ferent meridians, and rotated or reflected.  Here we 
generalize further to a magnification represented by a 

33×  matrix Y of which X is a submatrix according 
to Equation 4.  There is also a second submatrix d.  In 
generalizing from linear magnification to affine mag-
nification we are incorporating position of the image 

into our concept of magnification as well.  Thus affine 
magnification implies a change in appearance includ-
ing position.

 Whether one uses linear or affine magnification de-
pends on the application.  One may be interested only 
in the form of the image and not its location.  In that 
case linear magnification is appropriate and it is un-
necessary to use affine magnification.

Affine magnification can be decomposed into linear 
magnification X followed by transverse translation by 
vector d.  If X is not singular one can reverse the or-
der of the component operations but then translation 
is different; it is d′given by Equation 21.

There is nothing new here in the mathematics, and 
there is nothing here that cannot be done without the 
concept of affine magnification.  What the concept 
does, however, is that it takes advantage of the extraor-
dinarily compact nature of linear algebra by packing 
positional changes, as it were, into the same parcel as 
shape, size and orientation.  In doing so it streamlines 
Equation 3 into the elegantly simple Equation 7 which 
looks the same as so many other equations.  Instead of 
two parcels, X and d, we have to keep track of only 
one, Y.  At first sight this might not seem much of an 
advantage; but if one sets out, acquiring double the 
number of parcels necessary at each stop, one quick-
ly gets the point.  And because the many different 
packages all assume the same standard mathematical 
form we have the possibility of applying in new areas 
mathematical and statistical machinery developed for 
other applications.  One must stress, however, that it 
is possibility not certainty; for one needs to remain 
cognisant of any special characteristics of particular 
magnifications such as the symplecticity8 of subma-
trix S within transference T.
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