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Introduction

In Gaussian optics the student meets lateral (or 
transverse) magnification defined by1-6

h
hm

′
= .					             (1)

h′  is the height of the image and h the height of the 
object.  Transverse magnification is one of many types 
of magnification defined in Gaussian optics as a ratio 
of two scalars7.  Scalars are sufficient for character-
ising the dimensions of object and image and other 
parameters.  In linear optics, however, parameters are 
two dimensional; instead of scalars one has vectors.  
Because division by a vector is not defined definitions 
like that represented Equation 1 are not possible in 
linear optics.

Simple modification of Equation 1 to			 

h
hm

′
=h

hm
′

=
hmh ′= 					             (2)

does provide a definition suitable for generalization.  

In linear optics the generalization takes the form8-15

Xx = y
 .					             (3)

Scalars h and hmh ′=  become vectors x and y, perhaps 
representing the locations of corresponding points 
on an object and its image respectively; and scalar m 
becomes a 22× matrix operator X that operates on 
x to produce y.  Thus X ‘magnifies’ x to y.  How-
ever, while magnification in Gaussian optics is easy 
to interpret generalized magnification in linear optics 
is not.  What, for example, does a magnification of   
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mean?  To some extent the term ‘magnifi-

cation’ in this context is misleading.  It may mean 
magnification in its everyday sense.  But, in general it 
does not.  It means any distortion, rotation, reflection, 
inversion or any combination of these effects which 
can be represented by the linear equation Equation 3.  

Abstract

In Gaussian optics magnification is a scalar; the 
interpretation is obvious.  In linear optics, the sim-
plest optics of astigmatic systems, the generaliza-
tion is a 22×  real matrix and, in general, is much 
harder to interpret.  This generalized magnification 
may imply magnification in the familiar sense that 
differs from one meridian to another, shear distor-
tion, rotation, reflection, inversion, magnification in 
the familiar sense or combinations of these effects.  

The purpose of this paper is to illustrate general-
ized magnification and to provide a comprehensive 
interpretation.  Because the treatment is abstract it 
can be applied to blur and size magnification and 
to any magnification that can be represented by a   

22×  matrix. (S Afr Optom 2010 69(3) 109-122)
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We use it in the absence of any better word.
The purpose of this paper is to provide insight into 

the nature of this generalized magnification.  General-
ized magnifications of different kinds are illustrated 
and a method is presented for factorizing more com-
plicated types into types that are conceptually simpler.  
The intention is to provide a comprehensive analysis 
of generalized magnification for future applications 
in a variety of ways in astigmatic optical systems.

The ideas are developed in terms of the effect the 
magnification has in magnifying object to image.  
However, because the approach here is abstract the 
conclusions are in fact applicable, with suitable modi-
fications, to any process that can be represented by 
an equation of the form of Equation 3 including size 
magnification8-14, blur magnification11-14 and magnifi-
cation of ray position and inclination across a system 
and cross magnifications of ray parameters15.

We begin with a numerical example; it will be re-
ferred to repeatedly in what follows.

A numerical example

Consider the magnification
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.  Let us 

examine its effect on several vectors
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Equation 3 results in
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X magnifies x1 to y1.  Both vectors are plotted in 
Figure 1.  The top and bottom entries of a vector are 
rectangular coordinates conveniently referred to as 
the horizontal and vertical components respectively.  
Similarly X magnifies x2 to y2 , and so on for vec-
tors x3 ,  x4 and x5 , all of the vectors being shown in 
Figure 1.

In most cases magnification by X causes stretch-
ing and rotation of the vector.  Thus x1 is stretched 
and rotated anticlockwise to y1 . x2  and x4 are special, 
however, in that they are not rotated; magnification 
doubles the length of x2 and doubles the length and 
reverses x4. x2 and x4 are, in fact examples of what are 
known in mathematics as the eigenvectors of matrix 

X; the factors 2 and 2−  are corresponding eigenval-
ues16-18.  X has two eigenvalues.  Magnification by 
X magnifies by factor 2 in the direction of x2 and by 
factor 2 in the direction opposite that of x4.

Vectors xi may represent points on an object, yi and  
the locations of the corresponding points on the im-
age that is the result of generalized magnification by 
X.  Because X affects different points differently the 
image is a distorted version of the object.  O in Figure 
2 is a closed curve through the points defined by vec-
tors xi in Figure 1.  We can regard it as an object; the 
position vector of every point on it is magnified by X 
so the object itself is magnified by X.  The result is the 
image I in Figure 2.  E2 and 2E−  are two lines along 
which there is magnification without rotation; they 
are defined by the eigenvectors of the magnification.

Notice that travelling around the circumference of 
O, from x1 through x2 and then x3  , x4  and x5 in or-
der, takes one around the object in an anticlockwise sense 
while doing the same for corresponding points ( y1 , y2 , 
y3  , y5 , y4 ) takes one around the image in the clock-
wise sense.  Generally speaking generalized magnifi-
cation changes the shape, size and orientation of the 
object; and it may or may not change the (clockwise 
or anticlockwise) sense.

Figure 1 The effect of magnification
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on several 

vectors. o is the origin; it is unaffected by the magnification. x1 
is magnified to y1 ,  x2 to y1 , x3  to y3  and so on.  Magnification 
by X changes the length and rotates most vectors.  However x2  
is doubled in length but is not rotated and x4 is doubled in length 
and its direction is reversed. x2 and x4 are eigenvectors of X and 
the corresponding eigenvalues are 2 and 2−  .
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The generalized magnification in Figure 2 is de-
fined by the matrix X.  But neither the matrix nor the 
figure give much insight into the nature of what has 
happened in the transformation of object to image.  
However, as the example suggests, a key to insight is 
the eigenstructure of the magnification.

Figure 2  O is the outline of an object on which the points rep-
resented by vectors x1 , x2  , x3 , etc, lie.  I is the outline of the 
image of the object having been magnified by magnification 
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; on it points represented by y1 , y2 , y3 , etc, lie.  

Along E1  and 2E−  there is magnification by 2 and 2−  respec-
tively and no rotation; 2 and 2−  are the eigenvalues of X and E1 

and 2E−  the corresponding eigenspaces.

Eigenstructure of the magnification

The eigenstructure of magnification X plays an 
important role in understanding what magnification 
in the generalized sense actually means.  We turn to 
eigenstructure in general.

Consider an nn ×  real matrix X.  Suppose there 
exists a complex (that is, real or nonreal) scalar λ  and 
a nonnull complex vector x such that
Xx xXx λ= .					             (4)

Then λ  is called an eigenvalue of X and x is called an 
eigenvector of X corresponding to eigenvalue λ  .16-18

Informally what Equation 4 says is that, when it 
operates on certain vectors x, matrix X is acting like 
a scalar; it multiplies x exactly as the scalar λ  mul-
tiplies x.  On other vectors X does not generally act 
like a scalar.

It follows from Equation 4 that if x happens to be 
an eigenvector of X then any scalar multiple of x is 
also an eigenvector of X.  All of the eigenvectors cor-
responding to a particular eigenvalue define what is 
called the eigenspace E corresponding to that eigen-
value.  The eigenspaces corresponding to eigenvalues 
2 and 2−  in the example above are shown as E2 and 

2E− , respectively, in Figure 2.  In this case the ei-
genspaces are one-dimensional; they are straight lines 
and they correspond to what would be called prin-
cipal meridians in optometry.  We can refer to them 
as the eigenmeridians or principal meridians of the 
magnification X.  (It may seem a little odd that a line 
should be called a space but the description is per-
fectly logical.  The line is formally a vector space and 
in other contexts the space may have three or more 
dimensions.)

Finding the eigenvalues and eigenspaces of a ma-
trix is a classical problem in linear algebra; it is known 
as the eigenproblem or eigenvalue problem.  Its solu-
tion is described in standard texts16-18 and given by 
matrix-handling software such as Matlab.  The more 
interesting part of the eigenproblem is that of finding 
the eigenvalues.  We shall summarize that part; for 
eigenvectors the interested reader is referred to the 
literature16-18.

The eigenvalues of a matrix X are the solutions λ    
to the equation

( ) 0det =λ− IX  .				            (5)

The left-hand side of this equation is called the char-
acteristic polynomial of X and the equation is called 
the characteristic equation of X.

From here on we restrict attention to matrices X 
which are 22× , the types that interest us.  In terms 
of the entries of X, then, the characteristic equation 
becomes
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(6)

which multiplies out to

0dettr2 =+λ−λ XXtr 0dettr2 =+λ−λ XX .				            (7)

It follows from the fundamental theorem of alge-
bra18 that X has two eigenvalues; let them be −λ  and   

11 12

21 22
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+λ . Solving the quadratic equation we obtain
XX distr ±=λ± tr XX distr ±=λ± 	                                             (8)

where

( ) XXX det4trdis 2 −= (tr( ) XXX det4trdis 2 −= )2( ) XXX det4trdis 2 −=  			           (9)

is the discriminant of X.
Equation 8 reveals three possible situations: 

If    0dis >X  then −λ  and +λ  are real and distinct; 
if  0dis =X  then −λ  

and +λ  are real but the same; 
and if  0dis <X  then −λ  

and +λ  are complex and not 
real.  For the numerical example above 2−=λ−  and 

2=λ+  .
The discriminant can also be written as

( )2
L

2
K

2
J4dis XXX −+=X (X( )2

L
2

K
2

J4dis XXX −+=X )		                   (10)

where XJ , XK and XL are the coefficients in the expan-
sion

LKJIX LKJI XXXX +++= .		        (11)

I, J, K and L are the same basic matrices used else-
where for dioptric power and other 22× optical prop-
erties20, 21.

Instead of ±λ we shall write the eigenvalues of X 
as ±X .  They can be called the principal magnifica-
tions or eigenmagnifications of the magnification X.  
In fact it is useful to write magnifications in principal 
meridional form or eigenform as { } { }−+−− AXAX  
just as we do for dioptric power22.  The ±A are an-
gles representing the corresponding eigenspaces; they 
are the principal meridians of the magnification.  We 
mention also that16

+−= XXXdet  .				          (12)

Equation 8 shows that 
+− ≤ XX   when they are real 

numbers.  We shall also write the principal magnifica-
tions as X1 and X2 where order on the number line is 
not implied.

Expressed in principal meridional form the 
magnification of the numerical example above is 

{ } { }4.1820.1352− {135.0}2{18.4}. 
As Figure 2 illustrates generalized magnification, 

in forming images, typically magnifies and distorts 
and rotates, reflects or inverts objects.  There are spe-

cial cases in which the magnification reduces the ob-
ject to a line segment or to a point.  What happens in 
any given case depends on the rank of the matrix X, 
the topic to which we now turn.

Rank of the magnification

The values of x in Equation 3 may be restricted 
by the geometry of the physical structure such as an 
aperture for example.  However, we shall not address 
that issue here.  What interests us is the restriction 
on the possible values of y that arise out of the math-
ematical nature of the magnification X itself.  The set 
of possible values of y is called the range of X.17

It is obvious from Equation 3 that, if X = O , then   
y = o regardless of the value of x; thus the range of 
X is zero-dimensional.  If X is singular but not null 
then it turns out that y lies on a straight line through 
o; the range of X then is one-dimensional.  If X is 
nonsingular then the range of X is two-dimensional.  
In these three cases X is said to have rank 0, 1 and 2 
respectively17.

The rank of X, then, defines the dimensionality 
of the image.  (In Matlab it is given by the function 
rank.)  If X has rank 0 the image is a point; if the rank 
is 1 then the image is confined to a straight line; if the 
rank is 2 then the image may occupy any part of the 
plane.  (Examples will be seen in Figure 4 below.)

Below we shall interpret magnifications in terms 
of combinations of simpler magnifications.  To do so 
we shall need to know how magnifications combine.

Successive magnification

Suppose magnification X1  is followed by magni-
fication X2.  By Equation 3 the initial magnification 
magnifies x to y according to

yxX =1 .					           (13)

Also by Equation 3 the second magnification magni-
fies y to z according to

zyX =2 .					           (14)
Substituting from Equation 13 into Equation 14 we 
obtain

zxXX =12 .					           (15)

It follows that the overall effect is to magnify x to z 
according to
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Xx = z		                                                       (16)

where

12XXX = .					           (17)

Equation 17 provides the formula for successive mag-
nifications needed below.

We now examine particular types of magnifica-
tion.

Scalar magnification

Suppose magnification X has the form
X IX X= XI.					                      (18)
Matrix X is then called a scalar matrix and we shall 
refer to the magnification as scalar magnification.  
It is a negative, nonnegative or positive scalar mag-
nification according as 0<X  , 0≥X   or 0>X  .  
If 0=X   it is null magnification and if 1=X   it is 
identity magnification or identification.  Equation 3 
becomes

Xx = y						           (19)

because Ix = x.  Thus every vector x is simply multi-
plied by the scalar X; the matrix X behaves as a scalar 
for all vectors.

The discriminant of X (Equation 10) is zero and X 
is the only eigenvalue (Equation 8).  Equation 4 shows 
that every vector x is an eigenvector corresponding to 
eigenvalue X.  The corresponding eigenspace is two-
dimensional.  Every meridian is a principal or eigen-
meridian.  The determinant of X is X 2 and, hence, the 
rank of X is 2.  The only exception is for null magni-
fication for which the rank is 0.

Examples of scalar
 
magnification are shown in 

Figure 3 for scalars 2−=X , 1− , 2/1− , 0, 2/1 , 1, 2.
For 1=X   (that is, IX = ) the image is the same as 

the object (identification).
For 2=X  every point x becomes point xy 2= ; its 

distance from the origin is doubled.  There are no ro-
tational effects.  The object gets stretched outward 
equally in all directions. IX 2=  represents what is 
called two-times magnification in conventional us-
age.

IX 2
1=  represents scalar magnification by the fac-

tor 2
1 .  Magnification minifies.

	
Scalar magnification IX −=  reverses the posi-

tion of every point on the object relative to the ori-
gin; there is inversion along all meridians through the 
origin.  Notice that the image is not simply up-side 
down.  There is in fact nothing special about the di-
rections up and down; the same thing happens in all 
meridians.  The image is as much left-side right as it 
is up-side down.  Also notice that the arrow of the ob-
ject points anti-clockwise and so does the arrow of the 
image.  We say that the magnification preserves the 
sense of the object.  Inversion is one way of describ-
ing magnification I− ; another is that it is a rotation of 
the object through °180 , or a half-turn, about an axis 
perpendicular to the plane.  Indeed the description of  

I−  as a rotation seems to be the clearer; we regard it, 
therefore, as the preferred description of magnifica-
tion I− .

Negative and positive scalar magnifications all 
preserve the sense of the object.

Figure 3  Some scalar magnifications.  Identity magnification 
I leaves the object unchanged.  Null magnification O reduces 
the object to a point.  Magnification 2I  doubles the dimensions 
of the object without changing its shape and orientation; it is 
equivalent to what is commonly called two-times magnification.  
Negative scalar magnification changes the size of the object and 
rotates it through °180  .

The negative scalar magnification I2−  can be 
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written as ( )( )II 2−  ( )( )II 2− .  Hence, by Equation 17, it can 
be regarded as a positive scalar magnification ( )I2   
followed by a half turn ( I− ).  In general any negative 
scalar magnification IX  can be viewed as a positive 
scalar magnification IX−  followed by a half-turn.  
The order of the two magnifications can be reversed 
(half-turn followed by positive scalar magnification) 
though this is not possible for magnifications in gen-
eral because of noncommutativity of matrix multipli-
cation in Equation 17.

Scalar magnification is what one has in systems 
with no astigmatic elements.  More interesting for us 
is magnification in systems with astigmatic elements.  
Symmetric magnification comes as no surprise.

Symmetric magnification

Suppose X is symmetric and nonscalar.  The mag-
nification itself is then called symmetric.  The an-
tisymmetric coefficient  XL in Equation 11 is zero and 
the discriminant (Equation 10) is always positive.  It 
follows from Equation 8 that the eigenvalues are al-
ways real.  Just as for symmetric dioptric power the 
principal meridians of magnification are orthogonal.23  
In effect we have scalar magnification along the two 
eigenmeridians and we can draw magnification cross-
es just as we draw power crosses for dioptric power.

Figure 4 illustrates the effects of the magnifica-
tions listed in Table 1 on a particular object O.  (f) and 
(p) are the images under identification (X = I) and 
null magnification (X = O); they both represent scalar 
magnifications.  (m) also represents a scalar magnifi-
cation, negative scalar magnification ( IX −= ).  The 
rest represent nonscalar symmetric magnifications 
with the same principal meridians.

Image (g) in Figure 4 represents the magnifica-
tion 2{30}1{120} ; the object has been stretched 
to twice its length along the 30°30 -meridian while is 
length in the120°30 -meridian has not been changed.  
In (e) (magnification 0.5{30}1{120}) the object’s 
length has been halved along the  30°30 -meridian; there 
is minification along that meridian.  In (d) the magni-
fication along the 30°30 -meridian is zero; the object has 
been reduced to a line segment along the 120°30 -merid-

ian.  The magnification (0{30}1{120}) in this case 
is singular (the determinant is 10× ) and the rank 1.

By analogy with dioptric power magnification   
{ }{ }1201305.0− {30}1{120} might be called mixed.  The im-

age is (c) in Figure 4.  There has been minification 
(by half) and inversion (the negative sign) along the 
30°30 -meridian while again there has been no change 
along the 120°30 -meridian.  (b) ( { }{ }1201301− {30}1{120} ) 
represents pure inversion along 30°30 -meridian with 
no change in length; one might refer to this as an 
example of anti-scalar magnification.  In (a) ( { }{ }1201302−
{30}1{120}) there has been inversion and magnifi-
cation along the 30°30 -meridian.

Images (a), (b), (c), (d), (e) and (g) are all under 
magnification with unit principal magnification along 
the 120°30 -meridian.  (h), (i), (j) and (k) are images un-
der unit magnification along the 30°30 -meridian.  The 
rest of the images in Figure 4 represent magnifications 
of which neither principal magnification is 1.  (n) and 
(j) represent singular magnifications (rank 1).

Notice that magnification preserves the anticlock-
wise orientation of the object in Figure 4 in those 
cases whose principal magnifications have the same 
sign or, equivalently, have determinant greater than 
0.  On the other hand magnifications whose principal 
magnifications differ in sign (by Equation 12 the de-
terminant is less than 0) reverse the sense to become 
clockwise.

A symmetric matrix is called positive semidefinite 
if none of its eigenvalues is less than zero.17, 23  The 
magnification can also be called positive semidefinite.  
(d), (e), (f), (g), (j), (k) and (p) in Figure 4 and Table 1 
represent positive semidefinite magnifications.  Posi-
tive semidefinite magnifications seems relatively easy 
to visualize.  As we shall see below symmetric mag-
nifications that are not positive semidefinite can be 
interpreted as combinations of positive semidefinite 
magnifications and rotations or reflections.

There is a special class of symmetric magnifica-
tions that cause reflection.  We leave discussion of 
them until after we have examined magnifications 
that are rotations.

We turn attention now to magnifications that are 
not symmetric.
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Figure 4  Some symmetric magnifications of object O.  (a) to (p) 
are images under the magnifications.  The corresponding magni-
fications are listed in principal meridional form and as matrices 

in Table 1. IX =f  and IX −=m . OX =p  is a magnification of 

rank 0; jX , dX  and nX  are magnifications of rank 1; the rest are 
magnifications of rank 2.  Notice that the sense of the arrow in 
images (e), (f), (g), (k), (l) and (m) is anticlockwise (the same as 
in O) but clockwise in images (a), (b), (c), (h), (i) and (o). 

Asymmetric magnification

If X is not symmetric the magnification is asym-
metric.  The numerical example above (and illustrated 
in Figures 1 and 2) is a case in point.  It is an exam-
ple of an asymmetric magnification with positive dis-
criminant and, because of Equation 8, it has real and 
distinct principal magnifications.  There are two other 
classes of asymmetric magnification: those with dis-
criminant 0 and those with discriminant less than 0.

An example of asymmetric magnification with 

zero discriminant is
 










=

00

10
X  .

  
From the zeros in

 
the bottom row one sees that the image of any object 
under this magnification will have zero length in the 
vertical direction.  However the zeros in the first col-
umn mean that the horizontal length of the object is 
reduced to nothing.  In effect this magnification mag-
nifies any object to nothing in the horizontal direction 
and then rotates it clockwise through 90°30 .  (We exam-

Table 1    Symmetric magnifications of object O in Figure 4.

ine this magnification more fully below.)  An example 
is shown in Figure 5.  Notice how this differs from 
the magnification represented by Figure 4(d) where 
there is no rotation.  Now there is a single eigenvalue, 
namely 0, as one sees from Equation 8.  The (only) 
eigenmeridian is horizontal.  
In cases of this type the principal meridional repre-
sentation of magnification breaks down just as it does 
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in the corresponding situation for dioptric power22; on 
the other hand the matrix representation of magnifica-
tion as X works always.

Figure 5  The image I of an object O under the singular asym-

metric magnification
 
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=

00

10
X  .  The magnification can be in-

terpreted as symmetric magnification 0{180}1{90} followed 
by clockwise rotation through 90°30 .

Figure 6  The image I of an object O under asymmetric magnifi-

cation
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The magnification is equivalent to symmetric 

magnification 1{135}3{45} followed by clockwise rotation 
through 90°30 .

 
Magnifications with discriminants less than zero 

have nonreal eigenvalues and nonreal eigenvectors; 
there are no actual principal meridians.  Neverthe-
less it is still meaningful to write the magnification as 

{ } { }−+−− AXAX   although none of the four numbers 

is real.  An example is the magnification by
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illustrated in Figure 6.  The principal meridional mag-

nification is { } { }i7.37135i732.1i7.37135i732.1 −+− .732i{135+37.7i}1.732i{135 { } { }i7.37135i732.1i7.37135i732.1 −+−37.7i}, 
the principal magnifications being imaginary.

The most important asymmetric magnifications for 
our purposes, however, are pure rotations.  We exam-
ine them next.

Magnification as rotation

Consider the magnification

θ= RX 					           (20)

where
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θ−θ
=θ

cossin

sincos
R

 			         (21)

is a rotation matrix10, 23, 24; it represents anticlockwise 
rotation through angle θ .  It has

( )( )1cos4dis 2 −θ=X ((cos θ )2( )( )1cos4dis 2 −θ=X ).			         (22)

This type of generalized magnification represents 
pure rotation.  When °=θ 0  the rotation reduces to 
identification ( IX = ).  When °=θ 180  the rotation is 
equivalent to the negative scalar magnification I−  as 
illustrated in Figures 3 and 4(m).  In other cases X is 
asymmetric and the discriminant is always negative.  
We consider 

°<θ≤° 3600
.

	 Some examples of magnifications that are ro-
tations are shown in Figure 7.  The determinant of 
the magnification is 1 and the anticlockwise sense of 
the object is preserved under the magnification in all 
cases. 

Figure 7  Some rotational magnifications.  Note that the anti-
clockwise sense of the arrow in the object is preserved in the 

images. IR =°0   and IR −=°180 .
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Figure 8  Some reflectional magnifications.  Note that the an-
ticlockwise sense of the arrow in the object is reversed in the 
images.

 
For later reference we note that

 								      
θ−

−
θθ == RRR 1T

                                                 

(23)

where T represents the matrix transpose.
It is natural next to examine generalized magnifi-

cations that are reflections; they are actually examples 
of symmetric magnifications.

Magnification as reflection

Now consider generalized magnification
 								      

θ= RX
		                                            

(24)

where












θ−θ

θθ
=θ

2cos2sin

2sin2cos
R .			         (25)

  

θR
 
is a reflection matrix10, 24; it represents reflection 

in the meridian at angle θ .  Examples are shown in 

Figure 8.  °0R
 
is a reflection in the horizontal merid-

ian; it is a vertical inversion. °90R90°0R  is a horizontal in-

version.  Obviously °° = 0180 RR .  We need consider  
°<θ≤° 1800 .

The determinant of a reflection is 1−  ; the anti-
clockwise sense of the object in Figure 8 is reversed 
in all the reflected images.  We note that

θ
−
θ = RR 1

 .					           (26)

(A matrix like this whose inverse is itself is called 
involutory.16, 25)

With a view to interpreting asymmetric magni-
fications and symmetric magnifications that are not 
positive semidefinite we turn now to combinations of 
symmetric magnifications on one hand and rotations 
and reflections on the other.

Magnification as combination of symmetric mag-
nification and rotation

Suppose symmetric magnification symX  is fol-

lowed by rotation θR .  It follows from Equation 17 
that the result is magnification X given by

symXRX θ= .					           (27)
	
We now pose the following question: Given an 

asymmetric magnification X is it possible to treat it 
as a symmetric magnification followed by a rotation?  
This amounts to asking whether one can factorize X 
into post- and pre-factors symX  and θR .

Let us write Equation 27 as




















 −
=

db

ba

cs

sc
X

 
.			         (28)

Hence












++

−−
=

cdsbcbsa

sdcbsbca
X  

ca











++

−−
=

cdsbcbsa

sdcbsbca
X  

sb  cb 











++

−−
=

cdsbcbsa

sdcbsbca
X

 

sd 



















 −
=

db

ba

cs

sc
X .                                    (29)

Thus

( ) 2/I dacX +=  				          (30)

and

( ) 2/L dasX +−= .				          (31)

(This corresponds to determining the coefficients 
FI and FL of the dioptric power matrix F.21)  But 

cs /tan =θ .  Hence

IL /tan XX−=θ .				          (32)

From Equations 23 and 27 we have

XRX T
sym θ=  .				          (33)

It follows that for a given magnification X we can 

calculate θ  by means of Equation 32, θR  by means 

sa     cb  sb     cd
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of Equation 21 and, finally, symX  by means of Equa-
tion 33.  For θ   there are two solutions in [ )°° 360,0   
and, hence, two symmetric magnifications.  But the 
solutions differ by 180°30  and so the one rotation ma-
trix is the negative of the other.  Hence the one sym-
metric magnification is the negative of the other.  This 
procedure works for all asymmetric magnifications.  
Formally Equation 32 fails when 0I =X  but then one 
puts °=θ 9090°30 or 270°30  .

This procedure of factorizing a magnification into 
a symmetric magnification followed by a rotation also 
works for symmetric magnifications ( 0L =X ); then, 
from Equation 32, °=θ 900°30  or 180°30 .  That is so, how-
ever, provided 0I ≠X .  If 0I =X  the right-hand side 
of Equation 32 is indeterminate and the procedure 
fails.

For the numerical example above 0I =X  and 
1L =X .  So °=θ 9090°30  or 270°30 .  In the first case Equa-

tion 21 becomes

R90°30 LR −=








 −
=°

01

10
90 			                     (34)

and from Equation 33












−−

−
=











−










−
=

31

11

11

31

01

10
symX .

The symmetric part of the magnification has principal 
meridional magnification { } { }7.16624.17.7624.3− .24{76.7}1.24{166.7}.  
Thus the asymmetric magnification of the numerical 
example can be thought of as symmetric magnifica-
tion { } { }7.16624.17.7624.3− .24{76.7}1.24{166.7} followed by anticlock-
wise rotation by 90°30 .  Alternatively, choosing °=θ 90270°30  
we find that the magnification can also be interpreted as 
symmetric magnification { } { }7.16624.17.7624.3− .24{76.7} { } { }7.16624.17.7624.3−1.24{166.7}fol-
lowed by anticlockwise rotation by 270°30  or, equiva-
lently, clockwise rotation by 90°30  .

It follows from the discussion above that every 
magnification X, with the exception of symmetric 
magnifications with 0I =X  , can be regarded as sym-
metric magnification followed by a rotation.  This can 
be done in two ways.

We now consider magnifications that are combina-
tions of symmetric magnifications and reflections.

Magnification as combination of symmetric mag-
nification and reflection

Can a magnification X be regarded as a symmetric 
magnification followed by a reflection?  The question 
asks whether X can be factorized as

symXRX θ= .					           (35)

Proceeding much as for rotations we find that

JK /2tan XX=θ  .				          (36)

This gives a reflection θR   in terms of the coefficients 
of X in Equation 11.  Because of Equations 26 and 35 
we find that

XRX θ=sym .					          (37)

It follows that any magnification X can be regard-
ed as a symmetric magnification symX  followed by a 
reflection θR  where θ  is given by Equation 36 and 

symX  by Equation 37.  Again there are two solutions 
for θ , but now they are 90°30   apart.  One can calcu-
late   symX  corresponding to one of them and simply 
reverse the sign for symX  corresponding to the other.  

For magnifications with 0J =X  we must put 2 °=θ 9090°30   
or 270°30 , that is, °=θ 9045°30 or 135°30 .  The interpretation 
fails, however, for magnifications with both 0J =X  
and 0K =X  .

For the numerical example above one obtains 
°=θ 9031.7°30  or 121.7°30 .  For °=θ 9031.7°30











=

1305.34472.0

4472.03416.1
symX

which is equivalent to the positive semidefinite 
magnification 1.24{166.7}3.24{76.4}. Choos-
ing °=θ 90121.7°30  gives the principal magnification                                                 

{ } { }i7.37135i732.1i7.37135i732.1 −+−1.24{166.7} { } { }i7.37135i732.1i7.37135i732.1 −+−3.24{76.4} .
Thus every magnification can be viewed as a sym-

metric magnification followed by a reflection, also in 
two ways.  The only magnifications for which this is 

not so are those with 0KJ == XX .  
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Interpreting generalized magnification

The asymmetric magnification in the numerical ex-
ample above has been decomposed into a symmetric 
magnification followed by a rotation or a reflection; 
two angles are possible for the rotation and two for 
the reflection.  Of the four possibilities only one has 
the principal magnifications of the symmetric magni-
fication both positive; it is the positive semidefinite 
(positive definite in fact) symmetric magnification   
1.24{166.7}3.24{76.4} followed by the reflection 

°7.31R31.4°30 . This would seem to be the preferred interpre-
tation.

A magnification X can be interpreted as a positive 
semidefinite magnification followed by a rotation or a 
reflection according as its determinant is nonnegative 
or negative.  This follows because the determinant 
of symX

 
equals the determinant of X in the case of 

Equation 33 but the negative of the determinant of X 
in the case of Equation 37.

We are led to the following procedure for interpret-
ing a generalized magnification X.  If the magnifica-
tion is positive semidefinite we describe it as such.  
That includes symmetric magnifications with non-
negative principal magnifications and positive scalar 
magnifications, identification and null magnification.  
If the magnification is not positive semidefinite we 
choose rotation if  0det ≥X  and reflection otherwise.  
Two angles θ  are determined as described above in 
the case of combinations with a rotation and two as 
described above for combinations with a reflection.    

symX
 
is then calculated for each angle according to 

Equation 33 (rotation) or Equation 37 (reflection).  Of 
the two angles we select that one which makes symX   
positive semidefinite.

When 0LI == XX  a rotation cannot be found 

and when 0KJ == XX   a reflection cannot be 
found.  However, in the former case 0det <X   which 
requires a reflection while in the latter case 0det ≥X  
which requires a rotation.  Thus the procedure always 
works.

The procedure described here illustrates the gen-
eral principle known in linear algebra as polar decom-
position25.  Matrix X can be decomposed as

symRXX =RX symRXX =                                                            
(38)

(compare Equations 27 and 35) where

( ) 2/1T
sym XXX = (XTX)1/2

				          (39)
is positive semidefinite and

1
sym
−= XXR XX 1
sym
−= XXR  					           (40)

is orthogonal ( θR or θR ).

	 The interpretation of generalized magnifica-
tion is now illustrated by means of a few numerical 
examples.

More numerical examples

Magnification O is null magnification.  It is sym-
metric and its principal magnifications (both 0) are 
nonnegative. Thus null magnification is positive sem-
idefinite and, hence, we interpret it simply as null 
magnification.

Identification I is also positive semidefinite; we in-
terpret it simply as identification.  The same is true of 
all positive scalar magnifications.

Magnification I−   is not positive semidefinite.  (It 
is negative definite in fact.)  Hence we interpret it as a 
symmetric magnification followed by either a rotation 
or a reflection.  Because its determinant is positive we 
choose rotation.  0L =X  and 1I −=X  and, hence, 
from Equation 32 0tan =θ .  Thus we have the two 
angles °=θ 900°30  or 180°30  and the two possible rotations 

IR =°0  and IR −=°180  as follows from Equation 
21.  Equation 33 gives the two corresponding sym-
metric magnifications I−  and I.  Only the latter is 
positive semidefinite.  Hence we have the interpreta-
tion of magnification I−  as magnification I (identi-
fication) followed by anticlockwise rotation through 
180°30 .  (Of course ‘anticlockwise’ is redundant here.)  
This interpretation is in keeping with that already 
mentioned in connection with Figure 3.

Consider the magnification
 












00

01
.  It has rank

 
1 and so an image is confined to a straight line.  In 
principal meridional form the magnification is 
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1{180}0{90}. The magnification is positive semidef-
inite, so we interpret it as it is: magnification reduces 
the vertical width of the object to zero and leaves the 
horizontal width unchanged.

The magnification
 












−10

01

  
is J or, equivalently,  

1{180} { } { }7.16624.17.7624.3−1{90}.  This is symmetric but not positive 
semidefinite.  (It is indefinite.)  Because the deter-
minant is negative we choose reflections.  (This is a 
case in which we could not choose rotations anyway 

because 0LI == XX .) 0K =X
 
and 1J =X  and, 

hence, 02tan =θ   by Equation 36.  Thus  2 °=θ 900°30  
or 180°30  .  Hence °=θ 900°30  or 90°30 .  The corresponding 

reflections are
  

JR =










−
=°

10

01
0

 
and

 
JR −=°9090°30 JR −=°90 .

  
Hence we obtain the corresponding symmetric mag-
nifications JJ IJJ =  and IJJ −=−JJ IJJ −=−  by Equation 37.  The 
former is positive semidefinite and so we interpret J 

as identification I followed by reflection °0R in the 
horizontal or, simply, reflection in the horizontal (see 
Figure 8).

The singular magnification
 












00

10

 
is asymmet-

ric.  Because the determinant is 0 we choose rotation.    
0I =X

 
and  .5.0L =X   Thus °=θ 9090°30  or 270°30 .  By 

Equation 33 we obtain the symmetric magnifications












−
=





















−
=

10

00

00

10

01

10
symX

and











=

10

00
symX

 
respectively.  The latter represents 1{180}0{90} and, 
so, is positive semidefinite.  (The former is negative 
semidefinite.)  Thus the magnification is equivalent 
to 1{180}0{90} followed by anticlockwise rotation 
through 270°30  or, equivalently, clockwise rotation 
through 90°30  as already illustrated in Figure 5.

Magnification
 












−− 12

21

  
has positive determi-

nant.  Again 0I =X .  Hence °=θ 9090°30  or 270°30 .  The 
latter gives the positive semidefinite symmetric mag-
nification











=

21

12
symX

 
or, equivalently, 1{135}3{45}. Thus generalized 

magnification
  












−− 12

21

 
is equivalent to symmetric 

magnification 1{135}3{45} followed by clockwise 
rotation through 90°30 .  The magnification is illustrated 
in Figure 6.

Figure 9 illustrates generalized magnification by 












31

51
.  The negative determinant implies reflection.

 

Equation 36 gives ( )1/32tan −=θ .  Thus  °=θ 4.1082
or °4.288  and °=θ 9054.2°30  or °2.144 .  The correspond-
ing symmetric magnifications are

 











=



















−
=

6921.52649.1

2649.16325.0

31

51

3162.09487.0

9487.03162.0
symX

and its negative respectively.  The former is equivalent 
to 0.3{166.7}5.9{76.7} and is positive semidefinite.

  

Hence magnification
 












31

51

  
is equivalent to

 
sym-

metric magnification 0.3{166.7}5.9{76.7} followed 
by reflection in the meridian at angle 54.2°30  .

 

Figure 9  The image I of an object O under asymmetric magni-

fication
  












31

51
.  The magnification is equivalent to symmetric

 

magnification 0.3{166.7}5.9{76.7} followed by reflection in 
the meridian at angle 54.2°30  .
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Concluding remarks

Generalized magnification in linear optics is very 
much more complicated than in Gaussian optics.  In-
stead of being a scalar it is a 22×  matrix.  Magnifi-
cations can take the form of familiar magnifications, 
distortions, inversions, rotations, reflections and com-
binations of these.  We have illustrated generalized 
magnification in a number of representative cases.

Magnifications that are positive semidefinite (nei-
ther principal magnification is negative) are relative-
ly easy to interpret.  The principal meridians of the 
magnification are orthogonal; the object is magnified 
along the principal meridians by the corresponding 
principal magnifications.  One can construct magni-
fication crosses just as one does in the case of power 
crosses.

Generalized magnifications can take the form of 
rotations and reflections.  These are also easy to in-
terpret.

Every other generalized magnification can be in-
terpreted as a positive semidefinite magnification fol-
lowed by either a rotation or a reflection.  How one 
does so has been described above.

The interpretation of generalized magnification of-
fered here does not exclude other possible interpreta-
tions.  One could instead choose to have the rotation 
or reflection first with the symmetric magnification 
second.  Angles and matrices would then differ in 
general.  And there are other possibilities.  The de-
composition described here, however, seems the best, 
or equal to the best, for optometric applications in that 
it most closely resembles concepts already familiar in 
optometry including the power cross, principal pow-
ers and principal meridians.

One last point is, perhaps, worth making.  Gener-
alized magnification changes the appearance of an 
object; but no always.  If the magnification hap-
pens to be a symmetry of the object then the image 
will look as if there has been no change.  Rotation 
through 90

°30

  about the centre will change the appear-
ance of an equilateral triangle but not of a square.

In Part 2 we shall generalize magnification still 
further to a magnification that changes not only the 
appearance but also the position of an object26.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

20.

21.

Freeman MH.  Optics.  10th ed.  Butterworth-Heinemann, 
Oxford, 1990 93.
Das P.  Lasers and Optical Engineering.  Springer, New 
York, 1991, 18.
Smith WJ.  Modern Optical Engineering.  4th ed.  McGraw-
Hill, New York, 2008 26.
Meyer-Arendt JR.  Introduction to Classical and Modern 
Optics.  3rd ed. Prentice-Hall, Englewood Cliffs, NJ, 1989 
41.
Keating MP.  Geometric, Physical, and Visual Optics.  2nd 
Ed.  Butterworth-Heinemann, Boston, 2002 56.
Rabbetts RR.  Bennett & Rabbetts’ Clinical Visual Optics.  
4th ed.  Butterworth-Heinemann, Edinburgh, 2007 10.
Woo GC, Mah-Leung A.  The term magnification.  Clin Ex-
per Optom  2001 84 113-119.
Keating MP.  A matrix formulation of spectacle magnifica-
tion.  Ophthal Physiol Opt 1982 2 145-158.
Harris WF.  Stigmatic optical systems.  Optom Vis Sci 2004 
81 947-952.
Harris WF.  Proper and improper stigmatic optical systems.  
Optom Vis Sci 2004 81 953-959.
Harris WF  Magnification, blur, and ray state at the retina 
for the general eye with and without a general optical instru-
ment in front of it.  1. Distant objects.  Optom Vis Sci 2001 
78 888-900.
Harris WF  Magnification, blur, and ray state at the retina 
for the general eye with and without a general optical instru-
ment in front of it.  2. Near objects.  Optom Vis Sci 2001 78 
901-905.
Harris WF.  Image size magnification and power and dilation 
factors for optical instruments in general.  Ophthal Physiol 
Opt 2003 23 251-261.
Harris WF.  Near image size magnification for optical instru-
ments in general.  Optom Vis Sci 2003 80 606-608.
Harris WF.  Special rays and structures in general optical 
systems.  S Afr Optom 2010 69 51-57.
Lütkepohl H.  Handbook of Matrices.  Wiley, Chichester, 
1996 48, 63, 64, 254.
Horn RA, Johnson CR.  Matrix Analysis.  Cambridge Univ 
Press, Cambridge, 1985 5, 13, 35, 57, 396.
Zwillinger D.  CRC Standard Mathematical Tables and For-
mulae.  31st ed.  Chapman & Hall/CRC, Boca Raton, 2003 
84, 152-153.
Harris WF.  Nodes and nodal points and lines in eyes and 
other optical systems.  Ophthal Physiol Opt 2010 30 24-42
Harris WF.  Quantitative analysis of transformed transfer-
ences of optical systems in a space of augmented Hamilto-
nian matrices.  S Afr Optom 2007 66 62-67.

References

Acknowledgements

I gratefully acknowledge support from the Nation-
al Research Foundation.  I thank J R Cardoso and S D 
Mathebula for comments on the manuscript.



S Afr Optom 2010 69(3) 109-122	                              WF Harris - Generalized magnification in visual optics.  Part 1: Magnification as linear transformation

The South African Optometrist  			        ISSN 0378-9411
122

Harris WF.  Interconverting the matrix and principal meridi-
onal representations of dioptric power in general including 
powers with nonorthogonal and complex principal merid-
ians.  Ophthal Physiol Opt 2001 21 247-252.
Grossman SI.  Elementary Linear Algebra.  3rd ed.  
Wadsworth, Belmont CA, 1987 263, 320, 335.
Anton H, Rorres C.  Elementary Linear Algebra with Ap-
plications.  Wiley, New York, 1987 267, 280.
Bernstein DS.  Matrix Mathematics: Theory, Facts, and 
Formulas.   2nd ed.  Princeton University Press, Princeton, 
2009 179, 393.
Harris WF.  Generalized magnification in visual optics.  Part 
2: Magnification as affine transformation.  S Afr Optom 2010 
69 in press.

22.

23.

24.

25.

26.




