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Abstract

For a dioptric system with elements which may 
be heterocentric and astigmatic an optical axis has 
been defined to be a straight line along which a ray 
both enters and emerges from the system.  Previ-
ous work shows that the dioptric system may or 
may not have an optical axis and that, if it does 
have one, then that optical axis may or may not be 
unique.  Formulae were derived for the locations of 
any optical axes.  The purpose of this paper is to ex-
tend those results to allow for reflecting surfaces in 
the system in addition to refracting elements.  Thus 
the paper locates any optical axes in catadioptric 
systems (including dioptric systems as a special 

case).  The reflecting surfaces may be astigmatic 
and decentred or tilted.  The theory is illustrated 
by means of numerical examples.  The locations 
of the optical axes are calculated for seven opti-
cal systems associated with a particular hetero-
centric astigmatic model eye.  The optical systems 
are the visual system, the four Purkinje systems 
and two other nonvisual systems of the eye.  The 
Purkinje systems each have an infinity of optical 
axes whereas the other nonvisual systems, and the 
visual system, each have a unique optical axis. (S 
Afr Optom 2010 69(3) 152-160)
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Introduction

For a general dioptric system, that is, a dioptric 
system with elements that may be heterocentric and 
astigmatic, an optical axis is, by definition, a straight 
line along which a ray traversing the system both en-
ters and leaves.1  Given the length and transference of 
the system, and the indices of refraction of the media 
immediately before and after it, one can determine 
whether the system has an optical axis; and if the 
system does have an optical axis one can determine 
whether that optical axis is unique or not and find the 
location or locations of all of them in the system1, 2.  

The purpose of this paper is to generalize the defini-
tion and the results to catadioptric systems.  In other 
words the purpose is to define optical axes for sys-
tems that may also contain reflecting surfaces which 
may be astigmatic and tilted or decentred.  The opti-
cal model used here is linear optics.

Catadioptric systems

Let us imagine a ray traversing a general optical 
system.  Tracing the ray through the system we ob-
serve that it undergoes a sequence of steps involving 
refraction and reflection.  Let µ  be the number of re-
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within the system.  What it is doing there is of no 
consequence.  Within the system segments of the ray 
that defines an optical axis may or may not lie on the 
optical axis.

Figure 1 shows the entrance T0 and exit T planes 
of an arbitrary even-catadioptric system.  The system 
itself is not shown.  If there are no reflections, that is, 
if the system is dioptric ( 0=µ ) then the system lies 
between T0 and T.  If there are reflections ( 0>µ ) the 
system may extend upstream from T0 and downstream 
from T.  A ray R0R traverses the system in Figure 1.  
Only the incident R0 and emergent R segments of the 
ray are shown.  In the figure R0 and R happen to lie 
on straight line O.  By definition, then, O is an optical 
axis of the system.

Figure 2 shows a ray traversing an odd-catadiopt-
ric system.  Again segments R0 and R lie on the same 
straight line which then, by definition, is an optical 
axis of the system.  In contrast to the case of even-
catadioptric systems the segments are oppositely di-
rected.

This definition of optical axis depends on the con-
cept of the ray4, 5; it is not a definition limited to linear 
optics.  In order to examine questions of existence and 
location of optical axes we now invoke linear optics 
and so introduce the limitations associated therewith.  
For a treatment of linear optics and its limitations and 
relation to other optical models the reader is referred 
elsewhere6.

flections.  We partition the set of all systems into those 
for which µ  is an odd number and those for which µ   
is even number including 0; we call the former odd-
catadioptric and the latter even-catadioptric3.  Diopt-
ric systems are even-catadioptric because zero is an 
even number.

The analysis below holds for catadioptric systems 
in general.  The theory will be illustrated numerically 
by application to seven optical systems associated 
with the eye and described recently3.  Three of the 
systems are even-catadioptric (the visual system with   

0=µ  and two nonvisual systems with 2=µ ) and 
four odd-catadioptric (the Purkinje systems which 
have 1=µ ).  The transferences of these systems have 
been calculated3.  Here we draw on these previous 
results to locate optical axes in those systems.

Definition of an optical axis

The definition given before1 for an optical axis in 
a dioptric system we simply generalize unchanged to 
catadioptric systems.  Thus we have the following:

DEFINITION If the incident and emergent segments 
of a ray traversing a catadioptric system lie on the 
same straight line then that line is an optical axis of 
the system.

Nothing is said in this definition about the ray 

Figure 1  An optical axis O and entrance T0 and exit T planes of an even-catadioptric system.  A ray with incident segment  R0 
on O has emergent segment R also on O, with the two segments pointing in the same direction.  The system itself is not shown; it 
may extend upstream from T0 and downstream from T.
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Linear optics

Consider a ray traversing catadioptric system S 
(Figures 1 and 2).  In linear optics the emergent trans-
verse position y and the emergent inclination a of the 
ray are represented in terms of the incident transverse 
position y0 and a0  incident inclination   by

Ay0 yeBaAy =++ 000 n  Ba0 yeBaAy =++ 000 n                                              (1)

Cy0 aDaCy nn =++ π000  Da0 aDaCy nn =++ π000 .           (2)

(The symbolism used here is the same as that used in 
other papers1-3, 7, 8.)  Transverse positions y0 and y and 
inclinations a0 and a are all relative to longitudinal 
axis Z.  They are 12×  matrices with Cartesian coor-
dinates with respect to transverse axes Y1 and Y2.    Y1 
and Y2 are mutually orthogonal; we shall usually think 
of them as horizontal and vertical respectively with 
Y1 pointing to the right and Y2 pointing upward when 
one is looking in the direction defined by Z.  Incident 
segment R0 of the ray is in a medium (outside system 
S) of index of refraction n0 and emergent segment R 
(also outside S) is in a medium of the index n.

A, B, C, D, e and π  are the six fundamental first-
order optical properties of system S.  We call them 
the dilation, the disjugacy, the divergence, the di-
varication, the translation and the deflectance of S 
respectively.  The first four are 22×  matrices.  The 
last two are 12×  matrices; they account for the ef-
fects of tilt, decentration or prism in the system.  They 

are submatrices of the transference T ( 55× ) and ar-
ranged as follows
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where o is the 12×  null matrix and oT its matrix 
transpose.  We define the 14×  matrix δ  by
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T is an augmented symplectic matrix.  (Important 
consequences of symplecticity are summarized else-
where.9)

Suppose all the optical elements in system S are 
centred on axis Z; none is tilted or decentred.  A ray 
incident along Z will traverse and emerge from the 
system along Z.   Thus Z is an optical axis of S.  For 
that ray y0 and a0 are both null matrices and so are y 
and a.  It follows from Equations 1 and 2 that e and   
π  must also be ( 12× ) null matrices.  In this case then 
the system has

o=δ                                                                        (5)
where o is a 14×  null matrix.

When the elements of S are not centred on Z, or 
are tilted, then, usually, δδ  is not null.  A ray incident 
along Z emerges with transverse position ey =  and 
inclination n/π=a  as is clear from Equations 1 and 

Figure 2  An optical axis O and entrance T0 and exit T planes of an odd-catadioptric system.  The incident and emergent segments 
of a ray lie on O but point in opposite directions.  Notice that emergent segment R is in a medium of index n in both this figure and 
Figure 1.
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2 respectively.  In other words matrix δδ  of system 
S is a measure of the transverse displacement away 
from longitudinal axis Z undergone by a ray incident 
onto S along Z.  For want of a name we shall call δδ   
the transversion of the system.

Even-catadioptric systems

The distance parallel to Z from T0 to T of the even-
catadioptric system in Figure 1 is z.  We shall call z 
the effective length of the system.  z may or may not 
be the actual length of the optical instrument; because 
of reflection within it the instrument may extend up-
stream of T0 and downstream of T.  z may be positive 
(as in Figure 1), zero or negative.

From Figure 1 one sees that, for the ray that de-
fines optical axis O,
a0 = a.              (6)
Under the assumptions of linear optics it also follows 
that

yay =+ 00 z .             (7)

Substituting from these equations into Equations 1 
and 2 and rearranging we obtain

(A( ) ( ) eaIByIA −=−+− 000 znI)y0 + (n0 B( ) ( ) eaIByIA −=−+− 000 znzI)a0 ( ) ( ) eaIByIA −=−+− 000 zn  e          (8)

and

Cy0 ( ) π−=−+ 000 aIDCy nn )a0 ( ) π−=−+ 000 aIDCy nn .           (9)

It is convenient to combine Equations 8 and 9 into 
the single equation
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We now make the definitions












−

−−
=

IDC

IBIA
P

nn

zn

0

0

          
(11)

and











=

0

0
0

a

y
d

 
.           (12)

Then Equation 10 can be written

Pd0 δ−=0Pd δδ .           (13)

This is the same as the result obtained before1 for di-
optric systems ( 0=µ ).  In other words the result for 
dioptric systems now generalizes to all even-catadi-
optric systems ( 0=µ , 2, 4, …).

We shall call P the locator and d0 the location of 
optical axis O in system S. d0 is with respect to longi-
tudinal axis Z and at entrance plane T0.

Given a particular system S the problem of finding 
its optical axes reduces to finding solutions d0 (if any) 
to Equation 13.  Before seeking solutions we consider 
odd-catadioptric systems.

Odd-catadioptric systems

Consider now the odd-catadioptric system of Fig-
ure 2.  The ray leaves system S in the opposite direc-
tion to its direction at incidence.  So, instead of Equa-
tion 6, we have

aa −=0 .           (14)

Equation 7 applies as before.  Substituting into 
Equations 1 and 2 one obtains Equation 8 as before 
but instead of Equation 9 one obtains

Cy0 ( ) π−=++ 000 aIDCy nn )a0( ) π−=++ 000 aIDCy nn .         (15)

The result is Equation 13 again except that locator P 
is now defined by
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instead of Equation 11.

Optical axis locator

The optical axis locator P for odd-catadioptric sys-
tems (Equation 16) differs from the locator for even-
catadioptric systems (Equation 11) only in that it has 
a plus sign instead of a minus sign in the bottom-right 
block.  The two equations can be combined in one as

( ) 
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Alternatively one could use Equation 11 for both 
even- and odd-catadioptric systems provided that, 
for odd-catadioptric systems, one adopted the trick of 
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substituting n−  for n.  In this paper we prefer to use 
the more clumsy-looking but, perhaps, safer Equation 
17.

Singularity of the optical axis locator

Whether or not the optical axis locator P is singular 
will become an important issue below.  We therefore 
examine conditions under which it is singular.

The symplectic unit matrix9
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is nonsingular.  Making use of Equations 17 and 18 
one finds that

In obtaining Equation 19 use has also been made 
of symplecticity9 and, more particularly, of the 
facts that ATC and BTC are symmetric and that 

IBCDA =− TT  .
The optical axis locator P is singular or nonsin-

gular according as P T EP  is singular or nonsingular.  
(This is a consequence of Equations 5 and 6 of a pre-
vious paper9.)

Consider an odd-catadioptric system with 0nn =  
and 0=z .  For such a system Equation 19 reduces 
to

P EP
C C A D
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T T
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− −( )
−( ) −( )
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Suppose, in addition, that the system is such that C 
and B are symmetric and D = AT.  Equation 20 re-
duces to
P T EP = O.           (21)
Hence, for optical systems of this class, the optical 
axis locator P is singular.  Among the systems of this 
class are the Purkinje systems.  Numerical examples 
are presented in the appendix to a previous paper3 
(available at http://links.lww.com/OPX/A29).  (A pa-
per in preparation provides a general proof.)

Location of the optical axis

We are now in a position to solve Equation 13 for 
the location d0 of an optical axis.

If for a particular system the optical axis locator P 
is nonsingular then we can pre-multiply both sides of 
Equation 13 by the inverse of P to obtain the unique 
solution

δ1
0

−−= Pd .           (22)
It follows that such a system has a single optical axis, 
its location being given by Equation 22.

For a system for which the locator P is singular 
the mathematics is messier.  In such cases the inverse   

1−P  does not exist and Equation 22 does not hold.  
The system may or may not have an optical axis; it 
has an optical axis if and only if 10, 11

 
          

PP δδ =−PP                                                              (23)
where 1−P is the Moore-Penrose inverse of P.  If Equa-
tion 23 holds then all of the system’s optical axes are 
defined by

 
d P I P P g0 = − + −( )− −d ( )gPPIPd −− −+−= δ0d P I P P g0 = − + −( )− −d .                                    (24)

Here I is the 44×  identity matrix and g is an arbitrary 
14×  matrix we may call the generator.  Choosing a 

particular g one generates the location d0 of an optical 
axis.  Choosing all possible generators g one locates 
all the optical axes of system S.  (When the inverse 
does exist 1−− = PP  , Equation 23 is always satisfied 
and Equation 24 reduces to Equation 22.)

In keeping with common mathematical terminol-
ogy we say that, for a particular optical system, an 
optical axis exists if Equation 23 is satisfied and exists 
uniquely if Equation 22 holds.

Routine for locating optical axes

We can now lay out a general procedure for deter-
mining whether a catadioptric system has any optical 
axes and, if it does, for locating all of them.

At the outset we need four items of information 
about the system: its transference T, its effective 

  .      (19)

δδ

δδ δδ

δδ
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length z (that is, the distance from its entrance plane   
to its exit plane T0), the indices of refraction n0 and n 
and whether the number µ  of reflections in it is odd 
or even.  T can be calculated from a knowledge of 
the structure of the system as described elsewhere3.  
Software such as Matlab is ideal for handling the ma-
trices.

One begins by calculating the locator P by means 
of Equation 17 in which A, B, C and D are obtained 
from T.  The transversion δ  is also obtained from T 
(according to Equation 4).

Next one needs to determine if P is singular.  In 
some cases this is obvious as in the case of the thin 
prism described below and in the case of Purkinje 
systems; in other cases one has to evaluate the deter-
minant or rank of P.  (If the determinant is 0 or the 
rank is less than 4 then P is singular.)

If P turns out to be nonsingular then the system 
has a unique optical axis; its location d0 is determined 
using Equation 22.  (In Matlab the inverse is given by 

( )•inv .)
On the other hand if P turns out to be singular then 

one has to check whether Equation 23 is satisfied.  
This requires the Moore-Penrose inverse −P  (given 
by ( )•pinv  in Matlab and very tedious to calculate if 
done by hand).

If Equation 23 is not satisfied then the system has 
no optical axis.

If Equation 23 is satisfied then the system has at 
least one optical axis.  All of the optical axes can be 
located using Equation 24.  The generator g contains 
four numbers which take on all possible real values.  
In particular setting all four numbers in g equal to 0 
gives the location

         
δ−−= Pd0                                                            (25)

of one of the optical axes.
Equation 12 shows that the top half of the location   

d0  is the transverse position y0 of the optical axis at 
the entrance plane T0 and the bottom half is the in-
clination a0 of the optical axis, both y0 and a0 being 
relative to longitudinal axis Z.

Numerical results for seven ocular systems of a 
model eye

Table 1 shows the results calculated for seven ocu-
lar systems of the heterocentric astigmatic model eye 
considered elsewhere3. SP0 represents the visual sys-
tem of the eye, an even-catadioptric system ( 0=µ ); 
it is the dioptric system from entrance plane T0 just 
in front of the cornea to exit plane T just in front of 
the retina. SP1 to SP6 are six nonvisual ocular systems.    
SP1  to SP4 are the four Purkinje systems, odd-catadi-
optric systems ( 0=µ ) with reflection off the ante-
rior (SP1) and posterior (SP2) surfaces of the cornea 
and the anterior (SP3) and posterior (SP4) surfaces of 
the lens of the eye; they are the systems responsible 
for the first to fourth Purkinje images.  Their entrance 
and exit planes coincide and are immediately in front 
of the cornea. SP5 and SP6 are two nonvisual ocular 
systems Tshcerning12 describes as being responsible 
for harmful rays reaching the retina.  They are even-
catadioptric systems ( 2=µ ) with the same entrance 
and exit planes as the visual system; there is anterior 
reflection off the anterior (SP5) and posterior (SP6) sur-
faces of the lens of the eye followed by posterior re-
flection off the anterior surface of the cornea.

The optical axis locator P, listed in Table 1 for each 
system, is calculated using Equation 17.  The top-right 
block of four entries are in millimetres (mm); the bot-
tom-left entries are in reciprocal millimetres, that is, 
kilodioptres (kD).  For all of the systems 10 =n  (light 
enters from air).  n is the index of the medium in front 
of the retina (taken as 1.336 here) in the case of sys-
tems SP0, SP5 and SP6; those systems have the same ef-
fective length namely 6.24=z 24.6 mm.  For the Purkinje 
systems, systems SP1 to SP4, 10 == nn  and 0=z .  
Properties A, B, C and D are obtained from the trans-
ferences of the systems presented before3.  The trans-
versions δ  are also obtained from the transferences.

For the visual system SP0 , and for nonvisual sys-
tems SP5 and SP6, the locators P are all nonsingular 
(they have rank 4); thus each has a unique optical 
axis, its location d0 (calculated by means of Equation 
22) being listed in the last column of Table 1.  For 

δδ

δδ

δδ
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Table 1  The locator P for and location d0 of the optical axes of seven optical systems in a heterocentric astigmatic model eye.  
The entries in the top-right 22×  block of P and the top two entries of d0 are in millimetres and entries in the bottom-left block of 
P are in kilodioptres.
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here.  One expects the same to be true for any eye.  
For Purkinje systems the locator P is singular.  For the 
eye examined here there is an infinity of optical axes 
for each Purkinje system and one expects this also to 
be true of any eye.

We mention in passing that Purkinje is a com-
mon misspelling of the name of Czech scientist J. 
E.  

∨
ePurkyn  (1787-1869).  It is one of nine different 

spellings of the name that John has encountered in the 
literature.13

When we say here that an optical axis exists and 
has some particular location we are taking no account 
of stops or apertures in the system.  Furthermore the 
results are subject to the limitations of the optical 
model (linear optics) that has been used.  The defini-
tion of optical axis itself, however, is limited only in 
so far as the concept of the ray is limited.
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example the optical axis of the visual system (SP0) in-
tersects the entrance plane just in front of the cornea 
at the point with horizontal and vertical coordinates 
0.0486 mm and 0.3251 mm (to the right and above) 
longitudinal axis Z respectively.  Its inclination has 
horizontal coordinate 0111.0−  and vertical coordi-
nate 0608.0−  (radians) also relative to Z; into the eye 
the optical axis slopes to the left and down.

The locators P of the Purkinje systems are singular 
(they each have rank 2 in fact).  Equation 23 is satis-
fied for each of the systems.  Hence each of the sys-
tems has at least one optical axis.  In fact the Purkinje 
systems have an infinity of optical axes as represented 
in the last column of Table 1 in the form of Equation 
24, the 14×  column matrix being δ−−P  (the location 
of one of the optical axes) and the 44×  coefficient of 
generator g being PPI −− .

A simple example of a system for which the condi-
tion of existence of an optical axis (Equation 23) is 
not satisfied is a thin prism in air.  For it 10 == nn , 

0=z , 0=µ , B and C are null and A and D are iden-
tity matrices.  Equation 17 reduces to OP =  from 
which one finds that OP =−  .  Hence the left-hand 
side of Equation 23 is null and, therefore, not equal to 
the right-hand side unless the prism has null deflect-
ance π .

Concluding remarks

This paper generalizes the result obtained before1 
for dioptric systems with elements that may be het-
erocentric and astigmatic to catadioptric systems of 
which dioptric systems are a special case.  The expres-
sion for the optical axis locator P for dioptric systems 
holds in fact for all even-catadioptric systems (Equa-
tion 11).  For odd-catadioptric systems the locator is 
given by Equation 16.  The two equations combine as 
the single equation, Equation 17.

An optical system may or may not have an optical 
axis, and, if it does have one that axis may or may 
not be unique.  A system does have an optical axis if 
and only if Equation 23 (the condition of existence) 
is satisfied.  The system has only one optical axis if 
its optical axis locator P is nonsingular (the condi-
tion of uniqueness).  (Its location is given by Equation 
22.)  This is the case for the visual system and for 
nonvisual systems SP5 and SP6 of the eye examined 
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