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Introduction

Symplecticity is of profound significance to mod-
ern science and to optometry in particular.  It can even 
be argued (see towards the end of this paper) that it is 
the reason why refractive errors can be compensated 
by means of conventional spherocylindrical lenses 
and is, therefore, no less than a sine qua non of op-
tometry.

Symplecticity implies particular relationships 
among the fundamental optical properties of an opti-
cal system.  Although there are several good sources 
that deal with symplecticity1-4 they tend to be math-
ematically sophisticated and not readily accessible for 
most people working in visual optics.  Because the 

relationships can take many unfamiliar forms, are not 
easy to remember, and are often needed in analyses of 
optical problems it would seem useful to have a com-
pact and more accessible summary.  Accordingly the 
objective of this paper is to supply such a summary.

Basic results of linear algebra

We make use of the basic results of linear algebra 
as presented in introductory texts5-8.  Our matrices are 
all real, that is, their entries are all real numbers.  In 
particular for square matrices A and B
(ABT ) = BTAT 	         			           (1)
where TA   is the matrix transpose of A.  Also if
= =AB BA I ,				            (2)
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where I is an identity matrix, then B is the inverse of 
A and is written 1−A .  Then
(AB

_1) = B
_1A

_1,				            (3)
provided the inverses exist.  Also
(A

_1)T = (AT)
_1.				            (4)

We use the common abbreviation A
_T  for either side 

of Equation 4.  Also 
det(AB)=det A det B             			           (5)
and
det AT=det A .					            (6)

Partitioned matrices feature importantly in sym-
plecticity.  They take the form









=
DC
BA

S ,				            (7)

a matrix of matrices as it were.  They are no differ-
ent from ordinary matrices, however, and obey the 
usual rules of matrix algebra.  Equation 7 does not 
imply that S is 22×   though it is 22×  if each of the 
submatrices A, B, C and D is 11× . S is 44×  if each 
of the submatrices is 22× .  In optical applications S 
represents the transference of an optical system and 
the submatrices the ( 22× ) fundamental linear opti-
cal properties of the system.

Multiplication takes the form
    + +      =           + +    

A B E F AE BG AF BH
C D G H CE DG CF DH          

 (8)

as might be expected.  Multiplication by a scalar is as 
expected:

s s
s

s s
      =        

A B A B
C D C D

 .			          (9)

The transposition operator is taken inside the par-
titioned matrix but the off-diagonal submatrices are 
also interchanged:









=







TT

TTT

DB
CA

DC
BA .			         (10)

It might be supposed that similar simple expres-
sions can be written for the inverse and determinant 
of a partitioned matrix; that, however, is not the case 
in general.  (There are expressions but they are much 
more complicated9.)

The symplectic unit matrix

Consider the partitioned matrix









−
=

OI
IO

E :  .				         (11)

I and O are nn ×  identity and null matrices respec-
tively.  In general n is any positive integer although 
only 1=n  and 2=n  are needed on the optical con-
text; 1=n  applies in Gaussian optics (the simplest 
optics in the plane) and 2=n  applies in linear op-
tics (the simplest optics in three dimensions and the 
simplest proper approach to astigmatism). E itself is 

nn 22 ×  .  It is sometimes called the symplectic unit 
matrix10.  Although symbols vary, more often than not 
it is represented by J.  (We use E instead because J is 
already used for one of the basic matrices in the set I, 
J, K and L.)

Applying Equation 8 we find that
IE −=2 .					           (12)

(Notice that I does not have the same meaning in 
Equations 11 and 12: in the former it is nn × , in the 
latter nn 22 × .)  Hence

( ) ( ) IEEEE =−=− ( )E− IE = .                                          (13)
It follows from Equations 2 and 13 that

EE −=−1 .					           (14)
      It follows from Equation 10 that

EE −=T .					           (15)
From the definition5-8 of the determinant it turns 

out that
1det =E .					           (16)

Symplectic matrices

By definition a matrix S is symplectic if

STES=E.				                      (17)

The transference of an optical system is symplectic1, 4.  
Different optical systems can have the same transfer-
ence.  For every 22×  or 44×  symplectic matrix it is 
possible to have an optical system whose transference 
is that matrix.11, 12

Suppose 1S  and 2S  are both symplectic (and have 
the same n).  Consider the product 21SS  .  Substitut-
ing it into the left-hand side of Equation 17 we ob-
tain

( ) ( )21
T

21 SSESS  

   21
T
1

T
2 SESSS= E 21

T
1

T
2 SESSS= by Equation 1

   2
T
2 ESS= ES2 because S1 is symplectic

   E=  because S2 is symplectic.
In other words S1 S2  satisfies Equation 17 and so is 
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symplectic.  This means that the product of symplec-
tic matrices is symplectic or, in other words, symplec-
tic matrices are closed under multiplication.

On the other hand symplectic matrices are not in 
general closed under addition or multiplication by 
a scalar.  (The reader is encouraged to show this by 
working out some simple examples.)  This means, 
in particular, that an arithmetic average of symplec-
tic matrices is not in general symplectic, a fact that 
has important implications for basic statistics.  If one 
wants to calculate an average eye, for example, one 
would want the average to be a possible eye.  The 
fact that the arithmetic average of transferences is not 
symplectic in general implies that, strictly speaking, 
it is not meaningful to calculate an average eye that 
way.  The problem of how to calculate an average eye 
is not a simple one.  The relationship between sym-
plectic and Hamiltonian matrices, to be discussed be-
low, appears to offer a solution13-20.  Despite what we 
have said here the arithmetic average may, in some 
cases, be sufficiently close to being symplectic for it 
to be a good enough approximation.

It is easy to see that I and E are themselves sym-
plectic: they satisfy Equation 17.  On the other hand 
O does not and, therefore, is not symplectic.

Making use of Equations 6, 16 and 17 we find 
that

( ) 1det 2 =S .					           (18)

This suggests that
 1det ±=S .					           (19)

In fact it turns out that
1det =S .					           (20)

(The proof is not simple and will not be attempted 
here.  Proofs are given elsewhere2-4.)  This means 
a symplectic matrix S is never singular (that is, 

0det ≠S ) and its inverse 1−S   always exists.
Premutiplying both sides of Equation 17 by T−S  

and postmultiplying by 1−S  one obtains
E= (S

_1)T ES
_1.					          (21)

Comparing this with Equation 17 we see that, if S is 

symplectic, then so is 1−S  .
	 Inverting both sides of Equation 17 and pre-

multiplying by S and postmultiplying by 1−S   one 

obtains

E= (ST)T 
ES

T					           (22)

which shows that TS  is symplectic.
Let symplectic matrix S be partitioned as in Equa-

tion 7.  Then, from Equation 10,













=

TT

TT
T

DB

CA
S  .				          (23)

Substitution into Equation 17 results in







−

=






+−+−
+−+−

OI
IO

DBBDCBAD
DABCCAAC

TTTT

TTTT
 . (24)

Equating the four blocks on the left and right we see 
that

ACCA TT =  ,				          (25)
BDDB TT = ,					           (26)

IBCDA =− TT
                                                   (27)

and

ICBAD =− TT .				          (28)

Transposition applied to Equation 28 shows that it is 
equivalent to Equation 27.

When S is 22×   Equations 25 and 26 are trivially 
true and Equation 28 reduces to Equation 20.  If the 
four entries of a 22×  matrix are chosen arbitrarily 
then the matrix is usually not symplectic.  To con-
struct a 22×  symplectic matrix one is free to choose 
at most three of the entries arbitrarily; the fourth is de-
termined by Equation 20.  One can say that symplec-
ticity implies a loss of one degree of freedom from 
four to three.  Note that Equation 20 implies that a 

22×  symplectic matrix cannot have a row or a col-
umn of zeros.

When S is 44×  Equations 25 and 26 imply a 
loss of one degree of freedom each and Equation 27 
a loss of four degrees of freedom.  Thus, instead of 
16 degrees of freedom, a 44×  symplectic matrix has 
only 10 degrees of freedom.  Constructing a 44×  
symplectic matrix, however, is not easy.  A couple of 
methods will be described later.

Because TS  is symplectic Equation 22 shows that
T T T T

T T T T

   − + − +    =     −− + − +   

O IBA AB BC AD
I ODA CB DC CD  

.    (29)
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Hence

ABT = BAT ,				                      (30)

CDT = DCT ,					           (31)
 								      

ADT _ BCT = I	                                                      (32)

and

DAT _ CBT = I .				          (33)

Equation 33 is equivalent to Equation 32.
In order to test whether a given matrix is symplec-

tic or not one can proceed as follows.  One can direct-
ly test whether it obeys Equation 17.  Alternatively 
one can test whether all three of Equations 25 to 27 
(or Equations 30 to 32) are obeyed.  In either case if 
the matrix does obey the equation or equations then it 
is symplectic; if it does not then it is not symplectic.  
Numerical examples are presented in the Appendix.

Symmetric products

Applying Equation 1 to the right-hand side of 
Equation 25 we obtain

ATC
 = (ATC)T 

.				       (34)

In other words ATC is symmetric.  The same approach 
can be applied to Equations 26, 30 and 31.  One reach-
es the conclusion that, although A, B, C and D in S 
(Equation 7) can be symmetric or asymmetric, all of 
the following products are necessarily symmetric:

CAT , ACT , DBT , BDT ,

ABT, BAT, CDT, DCT.

Notice that, in these cases, the two submatrices in a 
product occupy the same row or the same column of 
S.  Furthermore, if the two submatrices share the same 
column of S then the first of the two is transposed; if 
the two are in the same row then the second is trans-
posed.  As an aid to memory one might say ‘rows, 
transpose second; columns, transpose first’.  Other 
products, including  AC, BDT, ATB, CTB, AB, BC, 
etc., are not symmetric in general.	

Postmultiplying Equation 25 by 1−A   and premul-

tiplying by T−A   results in

CA TT1 CACA −− =                                                     (35)

provided A is nonsingular.  Hence

CA_1=(CA_1)T                                                                                  (36)

showing that CA_1 is symmetric.  In the same way 
one finds other products that are symmetric.  Thus

AC_1, CA_1, BD_1, DB_1  

A_1B, B_1A, C_1D, D_1C,

are all necessarily symmetric.  One might say ‘rows, 
inverse first; columns, inverse second’.  The initial 
letters spell rifcis.  Other products, including  A_1C, 
B_1D, AB_1, CD_1 are not generally symmetric.

For an eye AB 1−  is the corneal-plane refractive 
compensation21 and BA 1−   is the optical structure (a 
point or interval of Sturm) conjugate to the retina22.  
The negatives of CA_1 and D_1C are back- and front-
vertex powers of an optical system23.

The inverted symplectic matrix

Because of Equations 25 to 28 multiplication 
shows that

I
DC

BA

AC

BD
=























−

−
TT

TT

 					   
			                                             

(37)

for a symplectic matrix S partitioned as in Equation 
7.  Similarly, because of Equations 30 to 32, one finds 
that

I
AC

BD

DC

BA
=













−

−










TT

TT

.			        (38)

By Equation 2 then we see that














−

−
=−

TT

TT
1

AC

BD
S  .			        (39)
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for any symplectic matrix S.  Thus the inverse of 
a symplectic matrix is what one might expect for 
a 22×  matrix except that the submatrices are also 
transposed.

The Schur complements

For A, B, C and D the submatrices of a matrix S as 

in Equation 7 the expression CBDA TT−−   is known 
as the Schur complement of A in S.  Similarly there 
are Schur complements of B, C and D in S.  Schur 
complements arose out of the work of I Schur24 and 
are of considerable modern scientific interest25.  It is 
no surprise that they should arise in visual optics.

If S is symplectic then the Schur complements re-
duce to particularly neat expressions:

 								      
A _ BD

_1C = D
_T,				          (40)

B _ AC
_1D = _C

_T,				          (41)

C _ DB
_1A = _B

_T,				          (42)

D _ CA
_1B = A

_T .				          (43)

These results were apparently first obtained by Dopi-
co and Johnson26.  In connection with eyes they have 
been involved in several papers22, 27-29 although not al-
ways recognised as such.

To prove Equation 40 we premultiply each side of 
Equation 28 by D

_T  to give
 								      

TTT −− =− DCBDA                                            (44)

and apply Equation 1 to give
 								      

A _ (BD
_1)T C= A

_T  
.
                                                                   (45)

Equation 40 follows because BD
_1 is symmetric.  

Equations 41 to 43 follow similarly.
Thus the Schur complements of the block-diago-

nal submatrices of transference S are the transposed 
inverses of their opposites while the Schur comple-
ments of the other submatrices are the negatives of 
the transposed inverses of their opposites.  To recall 

the sequence of submatrices on the left-hand sides of 
Equations 40 to 43 the following may be helpful: be-

ginning diagonally across in
 












DC

BA

 
from the sub-

matrix in question one writes the submatrices in cy-
clical order going clockwise for the block-diagonal 
matrices and anticlockwise for the others.

Hamiltonian matrices

There is another class of matrices which is impor-
tant in modern science and which bears a surprising 
relationship to symplectic matrices: it is the class of 
Hamiltonian matrices.  A matrix H is Hamiltonian if 
it obeys10, 30-34

HEEH TT =  .				          (46)

E remains the symplectic unit matrix defined by 
Equation 11 above.  In general H is nn 22 ×  but, as 
with symplectic matrices, we are interested only in 
Hamiltonian matrices with 1=n  (Gaussian optics) or   

2=n  (linear optics).
It is a remarkable fact that the principal matrix log-

arithm of a symplectic matrix is a Hamiltonian matrix 
and the matrix exponential of a Hamiltonian matrix is 
symplectic10, 17, 32-34.  The exponential of a real square 
matrix X is the real infinite convergent series

j

j j
XX ∑

∞

=
=

0 !
1:e  .				          (47)

Any matrix X which satisfies
 								      

AX =e                                                                 (48)

is called a logarithm of A; in general there is more 
than one.  However, if none of the eigenvalues of A 
is zero or a negative real number, then A does have a 
unique real logarithm the magnitude of whose eigen-
values are less than π  .  It is the principal logarithm 
and is written ALog .  So, if S is symplectic then

HS =Log 		                                            (49)
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is Hamiltonian and if H is Hamiltonian then

SH =e 		                                            (50)

is symplectic.
It is important to note that these are not the famil-

iar logarithm and exponential simply applied to the 
entries of the matrix separately.  (In Matlab they are 
given by the functions logm and expm as opposed to 
log and exp which operate separately on the entries of 
the matrix.)  See Example 3 in the Appendix.

Let H be a Hamiltonian matrix and s a scalar.  It is 
easy to show that the matrix Hs  obeys Equation 46 
and so is Hamiltonian.  (The left-hands side of Equa-

tion 46 equals EHTs   and the right-hand side equals   

HETs  but the two sides are equal because of Equa-
tion 46.)  Hence Hamiltonian matrices are closed un-
der multiplication by a scalar.

Now suppose 1H   and 2H   are each Hamiltonian 
and have the same n.  Then Equation 46 applies to 
each:

 								      

1
TT

1 HEEH = 		                                           (51)

and

2
TT

2 HEEH =  .				          (52)

Addition leads to

( ) ( )21
TT

21 HHEEHH +=+( ) ( )21
TT

2
T
1 HHEEHH +=+( ) ( )21

TT
21 HHEEHH +=+( ) ( )21

TT
2

T
1 HHEEHH +=+( ) ( )21

TT
2

T
1 HHEEHH +=+ 		        (53)

and so

( ) ( )21
TT

21 HHEEHH +=+  		        (54)

which shows that 21 HH +  obeys Equation 46.  Hence 
Hamiltonian matrices are closed under addition.

That Hamiltonian matrices are closed under ad-
dition and multiplication by a scalar means that the 
arithmetic average of Hamiltonian matrices is itself 
Hamiltonian.

It is apparent from Equation 46 that O and E are 

Hamiltonian but that I is not.
Suppose H is partitioned as

 









=

QP

NM
H .                                                     (55)

If H is Hamiltonian then according to Equations 46 
and 11






















−
=











−










QP

NM

OI

IO

OI

IO

QP

NM TT

         
(56)

which multiplies out to

 








 −−
=













−

−

NM

QP

NQ

MP
TT

TT
.			        (57)

This shows that
PP =T  ,					           (58)

NN =T
		                                            (59)

and
TMQ −=  .				                      (60)

In other words, for a Hamiltonian matrix partitioned 
as in Equation 55, the off-diagonal submatrices N and 
P are necessarily symmetric and one diagonal subma-
trix is the negative of the transpose of the other.

For a 22×   Hamiltonian matrix Equations 58 and 
59 are trivially true and Equation 60 is equivalent to 
the statement that
tr 0tr =H 		                                            (61)
or, in other words, that a Hamiltonian matrix has zero 
trace or is traceless as it is sometimes called.  Thus, 
as in the case of symplectic matrices, there is a loss of 
one degree of freedom from four to three.  In fact the 

22×  Hamiltonian matrices define a three-dimension-
al vector or linear space which means that it is possi-
ble to draw three-dimensional graphs representing the 
space.  Individual matrices can be plotted in the space 
to form trajectories and clusters.  An arithmetic mean 
is a point in the same space at the centre of a cluster.  

33×  variance-covariance matrices provide measures 
of spread and variation in the space.

For 44×   Hamiltonian matrices Equations 58 and 
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59 each represent a loss of a degree of freedom and 
Equation 60 a loss of four degrees of freedom.  Thus, 
also as for symplectic matrices, there is a loss of six 
degrees of freedom from 16 to 10.  The 44×  Hamil-
tonian matrices define a 10-dimensional vector space.  
Although one cannot make proper drawings of such a 
space one can certainly work in the space mathemati-
cally and calculate arithmetic means and 10 1010 ×10 vari-
ance-covariance matrices.18-20  (Equation 61 is, in fact, 
true for Hamiltonian matrices of any size.)

In order to test whether or not a particular matrix 
is Hamiltonian one can check whether or not it obeys 
Equation 46.  Or it may be easy to check whether all 
three Equations 58 to 60 are obeyed, that is, whether 
the two off-diagonal submatrices are symmetric and 
one diagonal submatrix is the negative of the trans-
pose of the other.  See the Appendix for examples.

Constructing a Hamiltonian matrix is just as easy.  
One chooses N and P in Equation 55 arbitrarily except 
that they must be symmetric.  One can then choose 
M arbitrarily in which case Q is the negative of the 
transpose of M.

How to construct a symplectic matrix

One occasionally wishes to construct a symplec-
tic matrix.  As mentioned above this is not difficult if 
the matrix is 22× : one can usually chose any three 
of the four entries and then calculate the fourth from 
the requirement that the matrix has a unit determinant 
(Equation 20).  The task is much harder if the matrix 
is 44× .  We describe two methods below.

      Consider the matrix
 










 ζ

IO

II

  
where ζ   is a scalar.

  
Testing shows that it is symplectic.  Now consider the ma-

trix
 












IC

OI

 
.  In general it is not symplectic because

 
Equation 25 fails.  However if we restrict C to being 
symmetric then we see that all of Equations 25 to 27 
are obeyed and so the matrix is symplectic.  Because 
symplectic matrices are closed under multiplication 
we can construct symplectic matrices by multiplying 
any number of matrices of these two forms.  (The first 
matrix is the transference of a homogeneous gap and 
the second that of a thin system. Instead of the first of 
these two matrices one can also use any matrix of the

 

form
 












IO

BI

  
where B is symmetric but an optical

 
system with this transference is not simple.)

A second method of constructing a symplectic ma-
trix can be quicker and easier.  We first construct a 
Hamiltonian matrix as described above and then take 
its matrix exponential using Matlab.  The result is 
symplectic.  See Example 2 in the Appendix.

Augmented symplectic matrices

For heterocentric systems it is sometimes conven-
ient to work with augmented symplectic matrices.  
They take the form
 								      











=

1To

S
T

δ

	                                                       

(62)

where S is symplectic.  Thus an augmented symplec-
tic matrix is a symplectic matrix with an additional 
right-hand column and an additional trivial bottom 
row.  If S is 44×   then T is 55×  .  Submatrix δ  is 
any 14×  matrix and o is the 14×   null matrix.  The 
bottom row of  T consists of four 0s and a 1.  For eve-
ry augmented symplectic matrix there corresponds an 
optical system.12

From the definition of the determinant 
ST det1det ×= .  Hence from Equation 20 

1det =T .					           (63)
TT  is not an augmented symplectic matrix.

Multiplication according to Equation 2 shows that












 −
=

−−
−

1T

11
1

o

SS
T

δ

				         
(64)

which is an augmented symplectic matrix.
The product of two augmented symplectic matri-

ces is an augmented symplectic matrix as the follow-
ing shows:







 +

=
1T

12121
21 o

SSS
TT

δδ

 
.
			        

(65)

Thus, like symplectic matrices, augmented symplec-
tic matrices are closed under matrix multiplication.  
They are also not closed under addition or under mul-
tiplication by a scalar.

δ

δ δ

δ

δ
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An augmented symplectic matrix can be parti-
tioned as



















=

1TT oo

DC

eBA

T π  .				         (66)

It follows from Equations 39 and 64 that



















−−

+−−

=−

1TT

TTTT

TTTT

1

oo

AeCAC

BeDBD

T π

π

 .	       (67)

Because submatrix S of augmented symplectic 
matrix T is symplectic all of the results for symplectic 
matrices (symmetric products, Schur complements, 
etc.) apply in the context of augmented symplectic 
matrices as well.

Augmented Hamiltonian matrices

As for symplectic matrices one can define an 
augmented Hamiltonian matrix to be a Hamiltonian 
matrix with an additional right-hand column and an 
additional bottom row.  An augmented Hamiltonian 
matrix takes the form

 								      











=

0To

H
G

β

                                                       

(68)

where H is Hamiltonian and β  is arbitrary.  The bot-
tom row is a row of zeros.

It is obvious that augmented Hamiltonian matri-
ces are closed under addition and multiplication by 
a scalar.  Thus the arithmetic average of augmented 
Hamiltonian matrices is augmented Hamiltonian.

Augmented Hamiltonian matrices bear the same 
relationship to augmented symplectic matrices as 
Hamiltonian matrices do to symplectic matrices.18  
That is, if T is augmented symplectic then

GT =Log 	                                                       (69)
is augmented Hamiltonian and if G is augmented 
Hamiltonian then

TG =e 		                                            (70)

is augmented symplectic.
If Hamiltonian matrix H is 44×  then augmented 

Hamiltonian matrix G is 55× .  The bottom row be-
ing trivial G has 20 nontrivial entries.  Submatrix β   
adds four degrees of freedom to the 10 of H.  Thus G 
has 14 degrees of freedom.

The augmented Hamiltonian matrices define a 14-
dimensional vector space in which one can calculate 
arithmetic means and 14 1414 ×14 variance-covariance 
matrices.19

Concluding remarks

The intentions here have been to bring together in 
one place basic results in the context of symplecticity 
which continue to be of use in work in the optics of 
vision.

From the definition of a symplectic matrix we see 
that the inverse and transpose of a symplectic matrix 
are also symplectic and that symplectic matrices (of 
the same size) are closed under matrix multiplication 
but not under addition or multiplication by a scalar.

Although the fundamental properties may be sym-
metric or asymmetric symplecticity makes certain 
pairwise products necessarily symmetric.  We now 
have the following rule: the product of two properties 
in the same row of a transference is symmetric if the 
second of the pair is transposed, and the product of 
two properties in the same column is symmetric if the 
first is transposed.  Thus CDT  (same row) and CTA  
(same column), for example, are symmetric while 
DTC, ACT, DC and AT , for example, may or may not 
be symmetric.

The product of a fundamental property and the in-
verse of another fundamental property is also sym-
metric provided the two properties are in the same 
row with the first inverted or in the same column with 
the second inverted.  For example D_1C and CA_1 
(the negatives of the front- and back-vertex powers of 
a system23) are symmetric while CD_1 and A_1C are 
not generally symmetric.

Of course where inverses are involved the equa-
tions are meaningful only if the matrices in question 
are nonsingular.  Furthermore one needs to be aware 
in numerical work that inversion of nearly-singular 
matrices can lead to spurious results.

B_1A  is the corneal plane refractive compensation 
for an eye.21  If it were not symmetric it would not be 

π

β

β

π

π

β
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Appendix

We illustrate here recognition (Example 1) and 
construction (Example 2) of symplectic and Hamilto-
nian matrices.  Example 3 compares the logarithm of 
the entries of a particular symplectic matrix with the 
matrix logarithm of the matrix.

Example 1  Classify each of the following as sym-
plectic, Hamiltonian or both:

(a) 










−− 11

21

(b) 










−− 11

01

(c) 










− 01

21

(d)
 























−

−−

−

3020

1412

1631

6004

(e) 























−−

−−

−

3021

1412

1631

6004

  

(f) 























−−

−−

−

3121

0412

1631

6004

  

Consider the 22×  matrices first.  All we have to 
do is check the determinant and the trace: if the deter-
minant is 1 then the matrix is symplectic; if the trace 
is zero then the matrix is Hamiltonian.  We see that 
(a) is both symplectic and Hamiltonian.  (b) is Ham-
iltonian and, because its determinant is not 1, it is not 
symplectic.  (c) is neither symplectic nor Hamiltoni-
an.  Thus (a) could be the transference of an optical 
system but (b) and (c) could not.  (a) and (b) could 
both be the log-transferences of optical systems.

Consider now the 44×  matrices.  We check first 
for Hamiltonicity.  Partitioning according to Equation 
55 we observe that submatrix P is not symmetric in 
(d).  Hence (d) is not Hamiltonian.  N and P are sym-
metric in (e) and Q is the negative of the transpose of 
M; hence (e) is Hamiltonian.  Q is not the negative of 
the transpose of M in (f) and so (f) is not Hamiltonian.  
Checking for symplecticity is not as easy.  We resort 
to substituting into the left-hand side of Equation 17 
and multiplying.  For (d) we finally obtain

which is not E.  Hence (d) is not symplectic.  We also 
do not obtain E for either (e) or (f).  Thus none of the   
matrices is symplectic.  Thus none of (d), (e) and (f) 
could be the transference of an optical system but (e) 
could be the log-transference of one.

Example 2  Starting with each of the Hamiltonian ma-
trices in Exercise 1 construct a symplectic matrix.

(a), (b) and (e) are the only Hamiltonian matrices 
in Exercise 1.  Using Matlab we obtain the matrix ex-
ponentials.  They turn out to be
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and

approximately.

Example 3  Compare the logarithm applied separately 

to the entries of the symplectic matrix
 












31

21

 
with

the principal matrix logarithm of the matrix.

They are  and   

respectively.


